
CS E6204 Lectures 9b and 10

Alexander-Conway and Jones Polynomials∗

Abstract

Before the 1920’s, there were a few scattered papers
concerning knots, notably by K. F Gauss and by Max
Dehn. Knot theory emerged as a distinct branch of
topology under the influence of J. W. Alexander. Emil
Artin, Kurt Reidemeister, and Herbert Seifert were
other important pioneers. Knot theory came into ma-
turity in the 1940’s and 1950’s under the influence of
Ralph Fox.

Calculating knot polynomials is a standard way to de-
cide whether two knots are equivalent. We now turn
to knot polynomials, as presented by Kunio Mura-
sugi, a distinguished knot theorist, with supplements
on the classical Alexander matrix and knot colorings
from Knot Theory, by Charles Livingston.

* Extracted from Chapters 6 and 11 of Knot Theory and Its
Applications, by Kunio Murasugi (Univ. of Toronto).

1



Knots and Graphs 2

Selections from Murasugi

§6.2 The Alexander-Conway polynomial

§6.3 Basic properties of the A-C polynomial

§11.1 The Jones polynomial

§11.2 Basic properties of the Jones polynomial
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1 The Alexander-Conway polynomial

Calculating Alexander polynomials used to be a tedious chore,
since it involved the evaluation of determinants. Conway made
it easy by showing that they could be defined by a skein relation.

The Alexander-Conway polynomial ∇K(z) for a knot K is
a Laurent polynomial in z, which means it may have terms in
which z has a negative exponent.

Axiom 1: If K is the trivial knot, then ∇K(z) = 1.

Axiom 2: For the skein diagrams D+, D−, and D0 in Fig 1.1,
the following skein relation holds:

∇D+
= ∇D−(z) + z∇D0

(z) (1.1)

D0D-D+
Figure 1.1: Diagrams for the Conway skein relation.

Remark In what follows, we take ∇K(z) to be invariant under
Reidemeister moves.
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Proposition 1.1 Let Oµ be the trivial link with µ components.
Then

∇Oµ(z) = 0 for µ ≥ 2 (1.2)

Proof In the Conway skein

∇D+
(z) = ∇D−(z) + z∇D0

(z)

for the link of Figure 1.2, we have

D+ = DOµ−1
D− = DOµ−1

D0(z) = DOµ

Thus, ∇D+
(z) = ∇D−(z), and

z∇D0
(z) = ∇D+

(z) − ∇D−(z) = 0

from which it follows that

∇Oµ(z) = ∇D0
(z) = 0 ♦

D+
...

µ-2 copies

Figure 1.2: D+ in a skein for Oµ.
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Example: Right Trefoil Knot

We use a skein tree with the knot itself at the root and in-
stances of Oµ at its leaves.

D0

D0

D-
D+

D+

D+

=~

1

1

z

=~ =~

positive
crossing

z

Figure 1.3: Skein tree for the right trefoil knot.

∇31
= 1 · ∇O1

+ z · 1 · ∇O2
+ z2 · ∇O1

= 1 · 1 + z · 1 · 0 + z2 · 1
= 1 + z2 (1.3)

The (classical) Alexander polynomial ∆K(t) is obtained by
substituting

z = t1/2 − t−1/2

into the Alexander-Conway polynomial. Thus,

∆31
= 1 + (t1/2 − t−1/2)2

= 1 + t − 2 + t−1 = t−1 − 1 + t (1.4)
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Example: Figure8 Knot

D0

D0

D-
D-

D+

D+

=~ =~

1

1

z

=~ =~

negative
crossing
-z

Figure 1.4: Skein tree for the figure-eight knot.

∇41
= 1 · ∇O1

+ z · 1 · ∇O2
− z2 · ∇O1

= 1 · 1 + z · 1 · 0 − z2 · 1
= 1 − z2 (1.5)

Thus,

∆41
= 1 − (t1/2 − t−1/2)2

= 1 − t + 2 − t−1 = − t−1 + 3 − t (1.6)
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Example: Hopf Links

D0D-

D+

1 z D0

D-

D+
1 -z

Figure 1.5: Skein trees for the Hopf links.

∇H+
= 1 · ∇O2

+ z · 1 · ∇O1

= 0 + z = z (1.7)

and, thus,
∆H+

= t1/2 − t−1/2 (1.8)

∇H− = 1 · ∇O2
− z · 1 · ∇O1

= 0 − z = − z (1.9)

and, thus,
∆H− = t−1/2 − t1/2 (1.10)
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Example: Whitehead Link

1

1

z

z

split Hopf

Figure 1.6: Skein tree for the Whitehead link.

∇52
1

= 1 · ∇O2
+ z2 · ∇H+

= 0 + z2 · z = z3 (1.11)

Thus,

∆52
1

= (t1/2 − t−1/2)3

= −t−3/2 + 3t−1/2 − 3t1/2 + t3/2 (1.12)
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2 The classical Alexander polynomial

Let K be an oriented knot (or link) with n crossings. Label the
crossings 1, 2, . . . , n, and label the n arcs y1, y2, . . . , yn, as in
Figure 2.1. We observe that all three crossings are positive.

1

2

3
y1

y3 y2

Figure 2.1: Trefoil knot with crossings and arcs labeled.

Construct an n × n matrix M , such that row r corresponds
to the crossing labeled r and column s corresponds to the arc
labeled ys. Suppose that at crossing r the overpassing arc is
labeled yi, that arc yj ends at crossing r, and that arc yk begins
at crossing r. Suppose also that i, j, and k are mutally distinct.
Suppose also that crossing r is positive. Then

M(r, i) = 1− t M(r, j) = −1 M(r, k) = t

and AK(r, s) = 0, otherwise. Thus, when K is the trefoil,

M =

1− t t −1
−1 1− t t
t −1 1− t


When crossing r is negative, then

M(r, i) = 1− t M(r, j) = t M(r, k) = −1

In the exceptional case where the three arcs are not distinct,
the sum of the entries described above goes into the appropriate
column.
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The Alexander matrix AK is defined to be the matrix ob-
tained from matrix M by deleting row n and column n. Thus,
the Alexander matrix for the trefoil knot is

AK =

(
1− t t
−1 1− t

)
We observe that the Alexander matrix is unique, at best, only
up to a permutation of the rows and columns. (It is, in fact, not
quite unique even in that sense.)

The (classical) Alexander polynomial ∆K(t) of a knot K
is the determinant of its Alexander matrix.

For the trefoil knot, we obtain

∆31
(t) = (1− t)2 + t = 1− t+ t2

We recall that we previously calculated that

∆31
(t) = t−1 − 1 + t

We regard two Alexander polynomials as equivalent if they differ
only by multiplication by ±tk.
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Example 2.1 (Figure-8 Knot)

1+

2-

3-4-

Figure 2.2: Figure-8 knot with crossings and arcs labeled.

AK =

1− t t −1
t 1− t 0
0 t 1− t



∆41
(t) = (1− t) · (1− t)3 − t · t(1− t) + (−1) · t2

= (1− 3t+ 3t2 − t3) − (t2 − t3) − t2

= 1− 3t+ t2

We previously calculated

∆41
= − t−1 + 3− t

which is equivalent, under the rules of equivalency given here.
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3 Properties of the A-C polynomial

Proposition 3.1 For any link K, we have

∇L(0) = ∇Oµ(0) = (µ = 1)

Proof The skein relation

∇D+
(z) = ∇D−(z) + z∇D0

(z)

implies that
∇D+

(0) = ∇D−(0)

Accordingly, the value of ∇L(0) is unchanged when the crossing-
type is changed. Changing sufficiently many crossings-types
turns any knot into a split union of unknots. Thus,

∇L(0) = ∇Oµ(0) ♦

Corollary 3.2 For any link L, we have ∆L(1) = (µ(L) = 1).

Proof We have defined the Alexander polynomial ∆L(t) by the
equation

∆L(t) = ∇L(t1/2 − t−1/2)

Thus, by Proposition 3.1, we have

∆L(1) = ∇L(0) = (µ(L) = 1) ♦
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4 The Jones polynomial

The Jones polynomial VK(t) for a knot K is a Laurent poly-
nomial in

√
t, which means it may have terms in which

√
t has

a negative exponent. We write t for
√
t

2
.

Axiom 1: If K is the trivial knot, then VK(t) = 1.

Axiom 2: For the skein diagrams D+, D−, and D0 in Fig 4.1,
the following skein relation holds:

1

t
VD+

(t) − t VD−(t) =

(√
t− 1√

t

)
VD0

(t) (4.1)

D0D-D+
Figure 4.1: Diagrams for the Jones skein relation.

We recall these two relations:

VD+
(t) = t2VD−(t) + tzVD0

(t) (4.2)

VD−(t) = t−2VD+
(t) − t−1zVD0

(t) (4.3)

where

z =

(√
t − 1√

t

)
(4.4)

We have previously proved the following:

Proposition 4.1 Let Oµ be a trivial link with µ components.
Then

VOµ(t) = (−1)µ−1
(√

t+
1√
t

)µ−1

(4.5)
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A skein-tree diagram reduces the calculation of VK(t) to ap-
plications of Prop 4.1 at the nodes of a tree.

Example 4.1 (The Figure-Eight Knot 41)

D0

D0

D-
D-

D+

D+

=~ =~

t2

t-2

tz

=~ =~

negative
crossing
-t-1z

Figure 4.2: Skein diagram for the figure-eight knot.

V (41)(t) = t2V (O1)(t) + t−1zV (O2)(t) − z2V (O1)(t)

= t2 − t−1
(√

t− 1√
t

)(√
t+

1√
t

)
−
(√

t− 1√
t

)2

= t−2 − t−1 + 1− t+ t2
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5 Basic properties of the Jones polynomial

Notation We denote by LtL′ a split union of links L and L′.

Proposition 5.1 Let L be any link. Then

VLtO1
(t) = −

(√
t+

1√
t

)
VL(t) (5.1)

Proof Consider the following skein tree:

D0D-

D+L

L L
t2 tz

We calculate

V (L)(t) = t2V (L)(t) + tzV (L tO)(t)

∴ V (L tO)(t) =
1− t2

tz
V (L)(t) =

t−1 − t
√
t−
√
t
−1

= (−1)

(√
t+

1√
t

)
V (L)(t)

Proposition 5.2 Let Oµ be a trivial link with µ components.
Then

VLtOµ(t) = (−1)µ
(√

t+
1√
t

)µ
VL(t) (5.2)

Proof Induction on Proposition 5.1. ♦
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Notation The connected sum of two knots is denoted K1#K2.

Theorem 5.3 Let K1 and K2 be knots. Then

VK1#K2
(t) = VK1

(t)VK2
(t) (5.3)

Proof Suppose we temporarily regard K2 as a point on K1 and
we expand the skein tree for K1 as follows:

VK1
(t) = f1(t)VO1

(t) + · · · + fm(t)VOm(t)

By replacing the special point by a copy of K2, we obtain

VK1#K2
(t) = f1(t)VK2

(t) + f2(t)VK2tO1
(t) + · · ·

+ fm−1(t)VK2tOm−2
(t) + fm(t)VK2tOm−1

(t)

By Proposition 5.2, we have

VK2tOµ(t) = (−1)µ
(√

t+
1√
t

)µ
VK2

(t)

Combining these two equations yields

VK1#K2
(t) = f1(t)VK2

(t) + f2(t)VO1
VK2

(t) + · · ·
+ fm−1(t)VOm−2

VK2
(t) + fm(t)VOm−1

VK2
(t)

=
(
f1(t) + f2(t)VO1

+ · · ·
+ fm−1(t)VOm−2

+ fm(t)VOm−1

)
VK2

(t)

= VK1
(t)VK2

(t) ♦
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Theorem 5.4 Let K1 and K2 be knots. Then

VK1tK2
(t) = −

(√
t+

1√
t

)
VK1

(t)VK2
(t) (5.4)

Proof From this skein-tree

D0D-

D+
K1 K2

K1 K2 K1 K2
t2 tz

we calculate

VK1#K2
(t) = t2 VK1#K2

(t) + tz VK1tK2
(t)

∴ VK1tK2
(t) =

1− t2

tz
VK1#K2

(t) =
t−1 − t
√
t−
√
t
−1

= (−1)

(√
t+

1√
t

)
VK1

(t)VK2
(t) ♦
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Theorem 5.5 Let −K be the knot obtained by reversing the
orientation on knot K. Then

V−K(t) = VK(t)

Proof The knots −K and K have the same skein tree, because
each crossing retains its sign. ♦

Theorem 5.6 Let K∗ be the mirror image of the knot K. Then

VK∗(t) = VK(t−1)

Proof Suppose we regard z as a function

z(t) = t1/2 − t−1/2

Then
z(t−1) = t−1/2 − t1/2 = − z(t)

Accordingly, the skein relations

VD+
(t) = t2VD−(t) + tzVD0

(t) (5.5)

VD−(t) = t−2VD+
(t) − t−1zVD0

(t) (5.6)

could be rewritten as

VD+
(t) = t2VD−(t) + tz(t)VD0

(t) (5.7)

VD−(t) = t−2VD+
(t) + t−1z(t−1)VD0

(t) (5.8)

In transforming the skein tree for K into the skein tree for K∗,
each application of Equation (5.5) is replaced by an application
of Equation (5.6), and vice versa. ♦
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A knot is amphichiral if it is equivalent to its mirror image.

Corollary 5.7 If K is amphichiral, then its Jones polynomial
is symmetric.

Proof This follows immediately from Theorem 5.6. ♦

Example 5.1 The trefoil knot is not amphichiral, since its
Jones polynomial is

V31
(t) = t+ t3 − t4
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Proposition 5.8 Let L be an oriented link with µ components.
Then

VL(1) = (−2)µ−1 (5.9)

Proof For t = 1, the skein equation (see Eq (4.2))

VD+
(t) = t2VD−(t) + ztVD0

(t)

becomes (since z(1) = 0)

VD+
(1) = VD−(1)

It follows that changing overcrossings to undercrossings or vice
versa has no effect on the value of VL(1). Of course, one could
select a collection of crossing-type reversals that reduces L to
the trivial link with µ components. Thus, by Proposition 4.1,
we have

VL(1) = VOµ(1)

= (−1)µ−1
(√

t+
1√
t

)µ−1 ∣∣∣∣
t

= 1

= (−1)µ−12µ−1 = (−2)µ−1 ♦


