
CS E6204 Lectures 8b and 9a

Knots and Graphs∗

Abstract

Heffter’s invention of rotation systems made it pos-
sible to investigate imbeddings of graphs from a pre-
dominantly combinatorial perspective. Analogously,
the Seifert matrix and the Alexander matrix made
knot theory amenable to algebraic methods. Subse-
quently, Conway’s rederivation of the Alexander poly-
nomial with skeins and the discovery of the Jones poly-
nomial, by Jones, and its subsequent combinatorializa-
tion by Kauffman and others has greatly facilitated the
calculation of knot and link invariants.

* Extracted from Chapters 16,17 of Algebraic Graph Theory, by
Chris Godsil (U of Waterloo) and Gordon Royle (U of Western
Australia).
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Chapter 16 of Godsil and Royle

1. Knots and their projections

2. Reidemeister moves on knots

3. Signed plane graphs

4. Reidemeister moves on graphs

5. Reidemeister invariants

6. The Kauffman bracket polynomial

7. The Jones polynomial

8. Connectivity
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1 Knots and Their Projections

A knot is a piecewise-linear (abbr. PL) mapping of the cir-
cle S1 into S3. We often refer to the image of a knot as the
knot. In dimension 3, the PL category is equivalent to the dif-
ferentiable category, so we may think of knots as smooth
closed curves.

A link is a collection of pairwise disjoint knots. For simplicity
of exposition, we may sometimes say “knot” when our meaning
is either a knot or a link.

A normal projection of a link (aka shadow) is a 4-regular
graph imbedded in the plane.

Hopf link its shadow

Figure 1.1: The Hopf link and its shadow.

A usual way to represent a link is a link diagram in which a
shadow of the link is augmented so as to indicate at each crossing
which strand of the link is “closer to the source of light” (the
overcrossing).
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The usual augmentation is to install an opening in the strand
containing the undercrossing, as illustrated in this figure of a
trefoil knot.

Figure 1.2: Knot diagram = augmented shadow.

Figure 1.3: An arc of a knot.

We observe that when making a complete traversal of all the
components of a link, each crossing occurs once as an overcross-
ing and once as an undercrossing. Since the number of arcs of
a knot equals the number of undercrossings (except for the un-
knot), it follows that the number of arcs equals the number of
crossings.



Knots and Graphs 5

The links L and L′ are equivalent if there is a homeomorphism

φ : S3 × [0, 1]→ S3 × [0, 1]

such that

• φ|S3×{0} is the identity mapping;

• φ|S3×{1} maps L× {1} to L′ × {1}.

Such a mapping φ is called an ambient isotopy from the link
L to the link L′. One imagines the link L being deformed little
by little into the link L′. Imagine a continuum of links, with
initial link L and final link L′.

0.0

1.0
φ

Figure 1.4: Conceptualization of an isotopy.

Alternatively, two links are equivalent if there is an orientation-
preserving homeomorphism of pairs

h : (S3, L)→ (S3, L′)



Knots and Graphs 6

Any knot that is equivalent to a circle in the xy-plane is called
an unknot.

A link that is equivalent to its mirror image is amphichiral.
Famously, the right trefoil and the left trefoil are not equivalent.

-
-

-

+
+

+

right trefoil left trefoil

Figure 1.5: Right and left trefoil knots.

In a projection of the right trefoil knot, the angle of motion
from the forward direction on the overcrossing strand (“positive
x direction) to the forward direction on the undercrossing strand
(“positive y direction”) is counterclockwise. (Your right thumb
points in the positive z direction.) In a projection of the left
trefoil knot, it is clockwise.

Remark It does not matter which way you orient the two
trefoil knots. These rules of thumb give consistent results.
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2 Reidemeister Moves

The three Reidemeister moves can clearly be implemented by
isotopies. Accordingly, they preserve knot type.

RI RII

RIII
Figure 2.1: The three Reidemeister moves.

The following theorem is attributed to Reidemeister [Rei32]. It
is a major step in the combinatorialization of links. The proof
(omitted) is topological.

Theorem 2.1 Two link diagrams determine the same link if
and only if one can be obtained from the other by a sequence of
Reidemeister moves and planar isotopies.
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The fundamental problem of know theory is to decide whether
two knots are equivalent. Since there are infinitely possible se-
quences of Reidemeister moves, one cannot simply try them all.
Wolfgang Haken [?] produced an algorithm to make this deci-
sion, but it is too complicated to be practical.

A property of links, such as a number, a polynomial, or a matrix,
whose value is unchanged by any of the Reidemeister moves is
called a link invariant. Thus, if a link invariant has different
values on two different diagrams, then the two diagrams repre-
sent different links.

Example 2.1 We define a proper 3-coloring of a link to
be an onto assignment of three colors to the arcs so that at each
crossing

• either all three colors occur, or

• only one color occurs

Figure 2.2: A 3-coloring of the trefoil knot.
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Example 2.2 We now prove that the diagram below of the
Whitehead link has no 3-coloring.

a b c cba

Figure 2.3: Attempts at 3-coloring the Whitehead link.

On the left, we suppose that the upper and lower semi-circles
are assigned the same color, say, red. If arc b is red, then arcs a
and c would have to be red also. If arc b is blue, as shown, then
arcs a and c both have to be a third colr, say, green. However,
this creates three crossing with two colors.

On the right, we suppose that the upper and lower semi-circles
are assigned red and blue, respectively. This forces arcs a and c
to be green, the third color. However, then there is no satisfac-
tory color for arc b.
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Theorem 2.2 3-colorability is invariant under all three Reide-
meister moves.

RI RII

RIII

Proof For RI , the same color must be assigned to both arcs
on the left. Use it again for the arc on the right.

For RII , if both arcs on the right have the same color, then
use that color for all four arcs on the left. If those two arcs
are colored differently, then assign the third color to the short
middle arc on the left.

For RIII , if the big X uses only one color, then the three curved
arcs all have that same color. If the big X uses three colors,
then there are several cases to be considered: in each of them,
the 3-coloring property can be preserved by changing the color
of only the middle curved arc. ♦
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3 Signed Plane Graphs

The shadow of a projection of an inseparable link is a connected
4-regular plane graph. The following proposition estrablishes
that we can properly bi-color the map of a shadow. Our con-
vention is to color the exterior region white.

Proposition 3.1 The dual of a connected 4-regular plane graph
is bipartite.

Proof Every cycle of the dual graph separates the plane, by the
Jordan curve theorem, and thus, it is a boundary cycle. Each
fb-walk in the dual imbedding has length 4, because the primal
graph is 4-regular. Every boundary cycle in any imbedding is a
sum modulo 2 of the edges in a set of bd-walks, which implies
that its length is even. ♦
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We define the black face-graph as follows:

• We place a black vertex in the interior of each black region.

• Through each vertex v of the shadow, we draw a black edge
joining the black vertices in the two black regions incident
on v. If one black region is twice incident on v, we draw a
self-loop.

We define the white face-graph similarly.

Example 3.1 Figure 3.1 shows a knot projection with 9 cross-
ings. Its shadow is a 4-regular plane graph with 9 vertices and
11 faces.

a knot its shadow and 
black face-graph

Figure 3.1: A knot, its shadow, and its black face-graph.

We observe the following:

• The shadow (red graph) is the medial graph of the black
face-graph.

• The shadow is also the medial graph of the white face-
graph.
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If a link projection has k crossings, then there are 2k links that
share the corresponding shadow. We now describe a way to
assign labels + and − to the k edges of the face-graphs.

At each vertex of the shadow, if the angular direction from the
overcrossing strand to the black edge to the undercrossing strand
is counterclockwise, than assign + to the black edge; if is is
clockwise, then assign the label -. The sign on a white edge
is similarly assigned, which implies that it is the opposite sign
from that of the black edge that it crosses.

signed white 
face-graph

+ +
+

++

a knot signed black 
face-graph

+

+
+

+

Figure 3.2: A knot and and its two signed face-graphs.

Proposition 3.2 Every signed plane graph corresponds to a unique
link projection.

Proof Draw the medial graph and implement the overcrossings
and undercrossings associated with the respective signs. ♦
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4 Reidemeister Moves on Graphs

Each Reidemeister move on a link projection is representable by
an operation on the corresponding pair of signed graphs.

RI

+

Figure 4.1: RGM1: delete a self-loop in one signed graph, and
contract a spike in the other.

RII

Figure 4.2: RGM2: contract a 2-path in one signed graph, and
delete two “parallel” edges in the other.

RIII
+

+

+

Figure 4.3: RGM3: change K1,3 in one graph into C3, and C3

into K1,3 in the other.
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7 The Jones Polynomial

We skip §5 of the text, because it disgresses into an unneeded
matroidal derivation of link invariants. We skip §6, because we
have already defined the Kauffman bracket polynomial.

Notation We switch from < L > to [L] to denote the bracket
polynomial of a link.

Consider traversing the undercrossing strand at a crossing of
an oriented link, in the direction of orientation. If the oriented
overcrossing strand goes left to right, we say that the crossing is
left-handed. Otherwise we say the crossing is right-handed.

left-handed xing right-handed xing
Figure 7.1: Left-handed and right-handed crossings.
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Kauffman Bracket Polynomials

We recall the axioms for Kauffman’s bracket polynomial.

Kauffman’s bracket polynomial is defined by three axioms:

Axiom 1. [©] = 1

Axiom 2u. [���] = A[ ) ( ] + A−1[^_ ] �-overcross

Axiom 2d. [��
�] = A[^_ ] + A−1[ ) ( ] �-overcross

Axiom 3. [L ∪©] = (−A2 − A−2)[L]

Both parts of Axiom 2 can be combined into a single axiom:

clock-
wise A A-1

Figure 7.2: Unified skein for bracket polynomial.
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X-Polynomials

The writhe of a link diagram L is the number of left-handed
crossings minus the number of right-handed crossings. It is de-
noted wr(L).

Example 7.1 Figure 7.3 shows that the right trefoil has writhe
3, and that the left trefoil has writhe -3.

+
+

+

right trefoil left trefoil
Figure 7.3: Left and right trefoil knots.

We next define the normalized bracket polynomial

X(L) = (−A3)−wr(L)[L]

which is also called the X-polynomial.

Remark There is a typo in the text. The negative sign in the
exponent is omitted.
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Theorem 7.1 The X-polynomial is invariant under the three
Reidemeister moves.

Proof for RM1

X(L   )  = (-A3)-wr(L)-1[L   ] =  (-A3)-wr(L)(-A3)-1{A[L,O] + A-1[L   ]}
=  (-A3)-wr(L)(-A-3){A(-A2-A-2)[L] + A-1[L]}
=  (-A3)-wr(L){(1+A-4)[L] - A-4[L]}  =  (-A3)-wr(L)[L]  =  X[L]

Proof for RM2

[L    ]  = A[L    ] + A-1[L    ]
=  A{A[L    ]+A-1[L    ]} + A-1{A[L    ]+A-1[L    ]}
=  (A2+A-2)[L    ] + [L    ] + (-A2-A-2)[L    ]}  =  [L    ]

X[L    ]  =  X[L    ]

Proof for RM2

[L    ]  =
[L    ]

A[L    ] + A-1[L    ]
=  A[L    ] + A-1[L    ]  =  

X[L    ]  =  X[L    ]

now apply invariance under RM2
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The Jones polynomial VL(t) of an oriented link is obtained
by substituting t1/4 for A in the X-polynomial XL(A). It is a
Laurent polynomial, which means that negative degrees are
allowed.

Trivial link with µ Components

Let Oµ be a trivial link with µ components. Then be applying
induction, we obtain

[O1] = 1

[Om] =
(
−A2 − A−2) [Om−1]

∴ [Oµ] = (−1)µ−1 (
A2 + A−2)µ−1

and we continue
∴ X(Oµ) = (−1)µ−1 (

A2 + A−2)µ−1

∴ VOµ
(t) = (−1)µ−1

(√
t+

1√
t

)µ−1

(7.1)
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To reduce the number of steps in the calculation of Jones poly-
nomials, we follow Murasugi [Mu96] and use two relations:

D0D-D+

VD+
(t) = t2VD−(t) + tzVD0

(t) (7.2)

VD−(t) = t−2VD+
(t) − t−1zVD0

(t) (7.3)

where

z =

(√
t − 1√

t

)
(7.4)
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The Hopf link

H0H-H

VH(t) = t2VH−(t) − tzVH0
(t) by (7.2)

= t2(−1)

(√
t+

1√
t

)
+ tz by (7.1)

= −t2.5 − t1.5 + t

(√
t− 1√

t

)
by (7.4)

= −t0.5 − t2.5

Exercise: Prove that if the orientation is changed on one (but
not both) of the components, then the Jones polynomial is

−t−0.5 − t−2.5
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Right trefoil knot

HT-T

VT (t) = t2VT−(t) + tzVH(t) by (7.2)

= t2 + t

(√
t− 1√

t

) (
−t0.5 − t2.5

)
by (7.4), Hopf

= t+ t3 − t4

Left trefoil knot

HT+T

VT (t) = t−2VT+
(t) − t−1zVH(t) by (7.3)

= t−2 − t−1
(√

t− 1√
t

) (
−t−0.5 − t−2.5) by (7.4), Hopf*

= t−1 + t−3 − t−4
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