
CS E6204 Lecture 6
Cayley Graphs

Abstract

There are frequent occasions for which graphs with a lot of sym-
metry are required. One such family of graphs is constructed using
groups. These graphs are called Cayley graphs and they are the sub-
ject of this chapter. Cayley graphs generalize circulant graphs. There
are variations in how different authors define Cayley graphs. This is
typical of mathematical literature.

1. Construction and Recognition
2. Prevalence
3. Isomorphism
4. Subgraphs
5. Factorization
6. Further Reading

Adapted from §6.2 of HBGT, by Brian Alspach, University of Regina, Canada.
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GENERATING SETS IN A GROUP

from Appendix A.4 of GTAIA:

A group B = 〈B, ·〉 comprises

• a nonempty set B and

• an associative binary operation ·

such that

• B has an identity element, and

• each g ∈ G has an inverse.

A subset X ⊆ B is a generating set of B if every element of
B is obtainable as the product (or sum) of elements of X.

Example 0.1 For the group Zn, a nonempty set of integers
mod n is a generating set iff its gcd is 1. This observation em-
ploys this standard fact:

The gcd of a set of positive integers equals the smallest
positive integer that can be formed by taking sums and
differences of numbers in the set.

For instance, the set {4, 7} generates Z24, since

gcd(4, 7) = 1

but {6, 9} does not generate Z24, since

gcd(6, 9) = 3
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0.1 Review of Cayley Graphs

Let B = 〈B, ·〉 be a group with generating set X. Then the
Cayley digraph ~C(B, X) has as its vertex-set and arc-set, re-
spectively,

V~C(B,X) = B and E~C(B,X) = {xb | x ∈ X, b ∈ B}

Arc xb joins vertex b to vertex bx. (Bidirected arcs are sometimes
used for generators of order 2.)

Let B = 〈B, ·〉 be a group with generating set X. The Cayley
graph C(B, X) is the underlying graph of the Cayley digraph
~C(B, X).

Example 0.2 Figure 1 shows the Cayley digraph for Z5 with
generating set {1} and the corresponding Cayley graph, which
is clearly isomorphic to the circulant graph circ(5 : 1).
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Figure 1: The Cayley digraph ~C(Z5, {1}) and the Cayley graph
C(Z5, {1}).
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Example 0.3 We observe in Figure 2 that the circulant graph
circ(24 : 6, 9) has three components, which are mutually iso-
morphic.
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Figure 2: The circulant graph circ(24 : 6, 9) has three compo-
nents.

• Every Cayley graph is connected, because the edges are de-
fined by a generating set.

• A circulant graph is a Cayley graph if and only if it is con-
nected.
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“CAYLEY COLOR GRAPH”

Let B = 〈B, ·〉 be a group with generating set X. The fiber
over a generator x ∈ X in the Cayley digraph ~C(B, X) or
Cayley graph C(B, X) is the set

x̃ = {xb | b ∈ B}

Terminology Note The traditional way to draw a Cayley di-
graph ~C(B, X) labels the vertices by group elements. Edges were
not given distinct names. Instead, a different color or graphic
feature was used for each edge fiber x̃, which led to the termi-
nology Cayley color graph.

Example 0.4 Figure 3 shows the Cayley digraph for the cyclic
group Z8 with generating set {2, 3}. The legend at the right
identifies the edge fibers, according to their graphic features.

0

1

2

34

5

6

7

2

3

Figure 3: A traditional drawing of the Cayley digraph
~C(Z8, {2, 3}).
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An arbitrary graph G is said to be a Cayley graph if there ex-
ists a group B and a generating set X such that G is isomorphic
to the Cayley graph for B and X.

Remark Figure 3 illustrates that a non-minimal generating
set for a group can be used in a Cayley-graph specification of
a graph. A minimum generating set for Z8 would have only
one generator, and the corresponding graph would specify an
8-cycle, not the graph shown above.

Example 0.5 The Cayley digraph ~C(Z8, {2, 3}) can also be
specified by the Z8-voltage graph in Figure 4.

2 3

Figure 4: A Z8-voltage graph that specifies ~C(Z8, {2, 3}).

Remark In fact, every Cayley graph can be specified by as-
signing voltages to a bouquet.
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MESHES: DIRECT SUMS OF CYCLIC GROUPS

Notation The notation used here for an element of a direct
sum of k small cyclic groups is a string of k digits, rather than
a k-tuple. For instance, 20 stands for the element (2, 0). This
convention avoids cluttering the drawings with parentheses and
commas.

Example 0.6 Figure 5 illustrates that the 3 × 4 wraparound
mesh is a Cayley graph for the group Z3 × Z4.
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Figure 5: The Cayley graph ~C(Z3 × Z4, {01, 10}).
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COMPLETE GRAPHS AS CAYLEY GRAPHS

Example 0.7 The complete graph K2n+1 is a Cayley graph for
the group Z2n+1, with generating set

X = {1, 2, . . . , n}

Figure 6 illustrates this for K7.
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Figure 6: The Cayley digraph ~C(Z7, {1, 2, 3}).

An element of a generating set X of order 2 would cause doubled
edges to appear in the Cayley graph. Collapsing such doubled
edges to a single edge enhances the usefulness of Cayley graphs
in algebraic specification.
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Bidirected-arc convention: Let y be a generator of order
2 in a group B. Then the pair of arcs that would otherwise
join vertex b to vertex by and vertex by to vertex b in a Cayley
digraph for B is replaced by a single bidirected arc between b and
by. The underlying graph of a digraph with bidirected
arcs has a single edge for each bidirected arc.

Notation ε denotes the identity element of a group.

Example 0.8 The dihedral group D4 is the group of rigid-body
motions on the unit square. Let r denote a 90◦ clockwise rotation
and let s denote a reflection through a vertical axis. Then the
elements of D4 are

{ε, r, r2, r3, s, rs, r2s, r3s}

Figure 7 shows a Cayley digraph for D4 with generating set
{r, s}.
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Figure 7: A Cayley digraph for the dihedral group D4.

JG REVIEW ENDS HERE
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1 Construction and Recognition

We restrict ourselves to finite graphs, which means we use finite
groups, but the basic construction is the same for infinite groups.

Let G be a finite group with identity 1. Let S be a subset of G
such that

• 1 6∈ S

• S = S−1, that is, s ∈ S if and only if s−1 ∈ S.

The Cayley graph on G with connection set S, denoted
Cay(G;S), satisfies:

• the vertices of Cay(G;S) are the elements of G;

• there is an edge joining g, h ∈ Cay(G;S) if and only if
h = gs for some s ∈ S.

Notation The set of all Cayley graphs on G is denoted Cay(G).
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Remark We do not require that the connection set S generate
the group G. It is standard to use additive notation when G is an
abelian group and multiplicative notation for nonabelian groups.

A Cayley graph on the cyclic group Zn is always a circulant
graph. We use the special notation Circ(n;S) for a circulant
graph on Zn with connection set S.

Remark We recall that the connections for a circulant graph
on Zn generate Zn if and only if their gcd is equal to 1. Thus,
a circulant graph is not a Cayley graph unless it satisfies this
condition.

(JG) Cayley noted that group can be regarded as a set of permu-
tations on its own elements, acting by left or right multiplication.

Notation gL denotes the permutation on the group G given
by the rule gL(h) = gh.

Notation GL denotes the permutation group

{gL : g ∈ G}

which is called the left-regular representation of G.

11



An automorphism of a simple graph G is a bijection f on
the vertex set V (G) such that

〈u, v〉 is an edge if and only if 〈f(u), f(v)〉 is an edge.

Let G be a transitive permutation group acting on a finite set Ω.
If G satisfies any one of the following three equivalent conditions,
then it is said to be a regular action:

• The only element of G fixing an element of Ω is the identity
permutation;

• |G| = |Ω|;

• for any ω1, ω2 ∈ Ω, there is a unique element g ∈ G satisfy-
ing the equation ω1g = ω2.

Fact-JG: **** The left and right actions of a group on its
own elements are regular. Moreover, the action of a group G
on the vertices of any Cayley graph for G is a regular group of
automorphisms on that Cayley graph.
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Examples

Example 1.1 The hypercube Qn may be represented as a Cay-
ley graph on the elementary abelian 2-group Zn

2 using the stan-
dard generators

X : e1, e2, . . . , en

for the connection set, where ei has a 1 in the i-th coordinate
and zeroes elsewhere.

Example 1.2 The complete graph Kn is representable as a
Cayley graph on any group G of order n, where the connec-
tion set is the set of non-identity elements of the group. We get
the complement of Kn by using the empty set as the connection
set.

Example 1.3 he complete symmetric multipartite graph Km;n,
with m parts, each of cardinality n, is realizable as a circulant
graph on Zmn, with the connection set

X = {j : j 6≡ 0 mod m}

Exercise Draw the complete symmetric multipartite graph
K3;4 as a circulant graph.
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The graph formed on the additive group of the finite fieldGF (qr),
with q ≡ 1 (mod 4), where the connection set is the set of
quadratic residues in GF (qr), is called a Paley graph.

(JG) For q = 5, we calculate squares:

12 = 1 22 = 4

thus, the Paley graph is Circ (5 : 1), the 5-cycle.

(JG) For q = 13, we calculate squares:

12 = 1 22 = 4 32 = −4 42 = 3 52 = −1 62 = −3

thus, the Paley graph is Circ (13 : 1, 3, 4).
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Figure 8: Paley graph of order 13.

(JG) All Paley graphs are self-complementary.

Exercise Prove that the Paley graph of order 13 is self-complementary.
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The circulant graph of even order n with connection set S =
{±1, n/2} is known as the Möbius ladder of order n.

Figure 9: Two drawings of the Möbius ladder of order 8.

Facts

Fact Every Cayley graph is vertex-transitive.

Fact The Cayley graph Cay(G;S) is connected if and only if
S generates G.

(JG) However, counting the number of automorphisms of a
graph is at least as hard as the graph isomorphism problem.
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Sabidussi’s Theorem is the basis for all work on recognizing
whether or not an arbitrary graph is a Cayley graph. It is an
absolutely fundamental result.

Fact [Sa58] Sabidussi’s Theorem: A graph G is a Cayley
graph if and only if Aut(G) contains a subgroup that acts reg-
ularly on G.

Example 1.4 Aut(C4) = D4, and D4 does not act regularly on
C4 because the diagonal reflections have fixed points. However,
The subgroup of rotations acts regularly, so C4 is a Cayley graph.

(JG) The forward direction of Sabidussi’s theorem follows from
the topological theorem that a graph is a regular covering space
if and only if there is a regular action, from which it follows that
graph is a Cayley graph if and only if it is a regular covering
graph of a bouquet.

Remark The Cayley graphs on the group Z n
` with the stan-

dard generators of the group as connection set are used as theo-
retical models of interconnection networks of homogeneous pro-
cessors in computer science.
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2 Prevalence

Since all Cayley graphs are vertex-transitive, a natural ques-
tion is whether or not the family of Cayley graphs encompasses
all finite vertex-transitive graphs. The Petersen graph (which
Alspach denotes JP5) is the smallest vertex-transitive graph that
is not a Cayley graph, and it suggests the topic of this section.

Figure 10: A non-Cayley vertex-transitive graph of order 26.

(JG) Proof that JP 5 is non-Cayley follows from the fact that
there are only two groups of order 10, namely, Z10 and D5. Sim-
ilarly, there are only two groups of order 26, namely, Z26 and
D13. It is provable from this that JP 13 is non-Cayley.
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(⇒) The next four pages are for REFERENCE ONLY.

Notation NC denotes the set of integers n for which there
exists a vertex-transitive graph of order n that is non-Cayley.

Example 2.1 If n ∈ NC, then any multiple of n belongs to NC.
This follows by taking the appropriate number of vertex-disjoint
copies of a non-Cayley, vertex-transitive graph of order n. Thus,
in order to determine NC, it suffices to find the minimal elements
belonging to NC.

Facts

The first two facts reduce the problem of trying to characterize
membership in NC to the consideration of square-free integers.

Fact A prime power pe ∈ NC whenever e = 4.

Fact Any positive integer, other than 12, divisible by a square
is in NC.
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Fact Let p and q be distinct primes with p < q. Then pq ∈ NC
if and only if one of the following holds:

• p2 divides q − 1;

• q = 2p− 1 > 3 or q = p2+1
2 ;

• q = 2t + 1 and either p divides 2t − 1 or p = 2t−1 − 1;

• q = 2t − 1 and p = 2t−1 + 1; and

• p = 7, q = 11;

Fact Let p and q be odd primes satisfying p < q. Then 2pq ∈
NC if and only if one of the following holds:

• p2 divides q − 1;

• p ≡ 1(mod 4) or q ≡ 1(mod 4);

• p = 7, q = 11;

• p ≡ q ≡ 3(mod 4), p divides q − 1, and p2 does not divide
q − 1;

• p ≡ q ≡ 3(mod 4), and p = q+1
4 ; and

• p = 7, q = 19.
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Fact Let p, q, r be distinct odd primes satisfying p < q < r.
Then pqr ∈ NC if and only if at least one of pq, pr or qr is a
member of NC, or none of pq, pr and qr is a member of NC but
one of the following holds:

• pqr = (22t

+ 1)(22t+1

+ 1), for some t;

• pqr = (2d±1 + 1)(2d − 1), for some prime d;

• pq = 2r ± 1 or pq = (r + 1)/2;

• pq = (r2 + 1)/2 or pr = (q2 + 1)/2;

• pq = (r2−1)/24x or pr = (q2−1)/24x, where x ∈ {1, 2, 5};

• ab = 2t + 1 and c divides 2t − 1, where {a, b, c} = {p, q, r};

• the largest power of p dividing q − 1 is pp and the largest
power of q dividing r − 1 is qq;

• q = (3p+1)/2 and r = 3p+2, or q = 6p−1 and r = 6p+1;

• q = (r − 1)/2 and p divides r + 1, where p > q when
p = (r + 1)/2;
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• p = (kd/2 + 1)/(k + 1), q = (kd/2 − 1)/(k − 1), r = (kd−1 −
1)/(k − 1), where k, d − 1, d/2 are primes and p > q may
be the case;

• p = (k(d−1)/2 + 1)/(k + 1), (k(k−1)/2 − 1)/(k − 1), r = (kd −
1)/(k − 1), where k, d, (d− 1)/2 are primes and p > q may
be the case;

• p = k2 − k + 1, q = (k5 − 1)/(k − 1), r = (k7 − 1)/(k − 1),
where k is prime;

• p = 3, q = (2d + 1)/3, r = 2d − 1, where d is a prime;

• p = (2d + 1)/3, q = 2d − 1, r = 22d±2 + 1, where d = 2t ± 1
is prime;

• p = 5, q = 11 and r = 19; and

• p = 7, q = 73 and r = 257.

Research Problem

P1: Is there a number k > 0 such that every product of k
distinct primes is in NC? There is no known characterization of
the members of NC that are products of four distinct primes.
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3 Isomorphism

Some of the most interesting and deepest work on Cayley graphs
has revolved around the question of trying to determine when
two Cayley graphs are isomorphic.

A Cayley graph Cay(G;S) is a CI-graph if whenever

Cay(G;S) ∼= Cay(G;S ′)

there exists an automorphism α ∈ Aut(G) such that S ′ = α(S).

A group G is a CI-group if every Cayley graph on G is a CI-
graph.

Example 3.1 The two circulant graphs

Circ(7; 1, 2) and Circ(7; 1, 3)

are isomorphic via the mapping that takes g to 3g for all ele-
ments of Z7. This mapping is an automorphism of Z7.
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Example 3.2 For n = 25, let

[S = {1, 4, 5, 6, 9, 11}] and [S ′ = {1, 4, 6, 9, 10, 11}]

The two circulant graphs Circ(25;S) and Circ(25;S ′) are iso-
morphic since both are wreath products of a 5-cycle with a 5-
cycle. On the other hand, it is easy to see there is no a ∈ Z∗25
for which S ′ = aS is satisfied. Thus, Z25 is not a CI-group.

Fact [Mu97] The cyclic group Zn is a CI-group if and only n =
2em, where m is odd and square-free and
e ∈ {0, 1, 2} or n ∈ {8, 9, 18}.

(JG) For e = 0, this yields Zn where n is a product of one or
more distinct odd primes.

Exercise Show that Z8 is a CI-group. This is case-by-case
analysis.
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The Cayley graphs on a CI-group can be enumerated in a straight-
forward way using Pőlya enumeration [Br64]. The next two the-
orems illustrate this for circulant graphs.

Fact [Tu67] If p is an odd prime, then the # of isomorphism
classes of vertex-transitive graphs of order p is[

2

p− 1

∑
d

Φ(d)2(p−1)/2d

]
where the summation runs over all divisors d of (p − 1)/2 and
Φ denotes the Euler totient function.

Example 3.3 For p = 7, Tutte’s theorem gives the number of
vertex-transitive 7-vertex graphs as

2

7− 1

[
Φ(1)2(7−1)/2·1 + Φ(3)2(7−1)/2·3]

= 1
3

[
1 · 23 + 2 · 21

]
= 12

3 = 4

The four graphs are 7K1, C7, Circ(7 : 1, 2), and K7.

Exercise Evaluate Tutte’s theorem for p = 11 and list the
different graphs.

Research Problem

P2: For an odd prime p, determine the values of e for which Ze
p

is a CI-group.
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4 Subgraphs

There are interesting results and questions regarding subgraphs
of Cayley graphs. Some of the results we mention hold for all
vertex-transitive graphs, and we state them accordingly.

A graph G is Hamilton-connected if for any two vertices
u, v of G, there is a Hamilton path whose terminal vertices are
u and v.

A bipartite graph with parts A and B is Hamilton-laceable
if for any u ∈ A and v ∈ B, there is a Hamilton path whose
terminal vertices are u and v.

Fact [ChQi81] Let G be a connected Cayley graph on a finite
abelian group. If G is bipartite and has degree at least 3, then
G is Hamilton-laceable. If G is not bipartite and has degree at
least 3, then G is Hamilton-connected.
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Facts

Fact Let G be a connected vertex-transitive graph. If G has
even order, then G has a 1-factor. If G has odd order, then G−v
has a 1-factor for every vertex v ∈ G.

Fact If a d-regular graph G is connected and vertex-transitive,
then G is d-edge-connected.

Fact For every positive integer m, there exists a Paley graph
containing all graphs of order m as induced subgraphs.

Fact [Wi84] Every connected Cayley graph on a group of order
pe, where p is a prime and e = 1, has a Hamilton cycle.
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5 Factorization

Definitions

A 1-factorization of a graph is a partition of the edge set into
1-factors.

The connection set S is a minimal generating Cayley set
for the group G if S generates G, but

S − {s, s−1}
generates a proper subgroup for every s ∈ S.

A Hamilton decomposition of a graph G is a partition of
the edge set into Hamilton cycles when the degree is even, or a
partition into Hamilton cycles and a 1-factor when the degree is
odd.

An isomorphic factorization of a graph G is a partition of
the edge set of G so that the subgraphs induced by the edges in
each part are pairwise isomorphic.
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Facts

Fact [St85] A given connected Cayley graph on the group G
has a 1-factorization if one of the following holds:

• |G| = 2k for an integer k;

• G is an even order abelian group; or

• G is dihedral or dicyclic.

Fact [Li96, Li03ta] If G = Cay(G,S) is a connected Cayley
graph on an abelian group G and S is a minimal generating
Cayley set, then G has a Hamilton decomposition.

Fact [Fi90] If T is any tree with n edges, then the n-dimensional
cube Qn has an isomorphic factorization by T . Furthermore,
there is an isomorphic factorization so that each copy of T is an
induced subgraph.

Research Problem

P3: Let C be one of the classes of circulant graphs, or Cayley
graphs, or vertex-transitive graphs. Is it the case that for ev-
ery graph G ∈ C, whenever d divides |E(G)|, then there is an
isomorphic factorization of G into d subgraphs?
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6 Further Reading

Remarks

Remark There is a long history and an extensive literature
about imbedding Cayley graphs on orientable and non-orientable
surfaces. See Chapter 7 in this volume. The books [GrTu87],
[Ri74], and [Wh01] and a recent excellent survey [RiJaTuWa03ta]
provide a good starting point for this topic.

Remark There are a variety of meaningful applications of Cay-
ley graphs.

• Circulant graphs appear in the study of circular chromatic
number. For a recent survey see [Zh01].

• Cayley graphs occur frequently in the literature on net-
works. A recent book on this topic is [Xu01] and a funda-
mental paper is [AkKr89].

• Cayley graphs play a central role in some work on ex-
panders. Two excellent references are [Al95] and [Lu95].

Remark A survey on Cayley graph isomorphism is provided
in [Li02].

Remark A good general discussion about vertex-transitive
graphs and Cayley graphs is [Ba95]. A good starting point for
reading about NC is [IrPr01].
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