
CS E6204 Lecture 5
Automorphisms

Abstract

An automorphism of a graph is a permutation of its vertex set that
preserves incidences of vertices and edges. Under composition, the set
of automorphisms of a graph forms what algbraists call a group. In
this section, graphs are assumed to be simple.

1. The Automorphism Group
2. Graphs with Given Group
3. Groups of Graph Products
4. Transitivity
5. s-Regularity and s-Transitivity
6. Graphical Regular Representations
7. Primitivity
8. More Automorphisms of Infinite Graphs

* This lecture is based on chapter [?] contributed by Mark E.
Watkins of Syracuse University to the Handbook of Graph The-
ory.
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1 The Automorphism Group

Given a graph X, a permutation α of V (X) is an automor-
phism of X if for all u, v ∈ V (X)

{u, v} ∈ E(X)⇔ {α(u), α(v)} ∈ E(X)

The set of all automorphisms of a graph X, under the operation
of composition of functions, forms a subgroup of the symmetric
group on V (X) called the automorphism group of X, and it
is denoted Aut(X).

Figure 1: Example 2.2.3 from GTAIA.

Notation The identity of any permutation group is denoted
by ι.

(JG) Thus, Watkins would write ι instead of λ0 in Figure 1.
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Rigidity and Orbits

A graph is asymmetric if the identity ι is its only automor-
phism. Synonym: rigid.

Figure 2: The smallest rigid graph.

(JG) The orbit of a vertex v in a graph G is the set of all
vertices α(v) such that α is an automorphism of G.

Remark While all vertices in the same orbit of Aut(X) must
have the same valence, there exist rigid graphs all of whose ver-
tices have the same valence.

Figure 3: Is this 3-regular graph rigid?

Exercise Must an automorphism map each white vertex to
itself. Is the graph in Figure 3 rigid?
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Automorphism Group of a Subgraph

Remark If Y is a subgraph of X, then except in special cases
there is no relationship between Aut(X) and Aut(Y ).

• (JG) For instance, if X is the rigid graph of Figure 2, and
if Y is the 3-cycle, then Aut(X) is trivial and Aut(Y ) is the
symmetric group Σ3.

• (JG) Alternatively, if Y is the rigid graph with 6 vertices,
and it is a subgraph of K6, then Aut(X) is Σ6 and Aut(Y )
is the trivial group.

Remark When saying that the automorphism group of a graph
X “is isomorphic to” a group G, it is ambiguous whether we
mean that the isomorphism is between abstract groups or be-
tween permutation groups (see §2). In the examples immedi-
ately below, the automorphism groups Aut(X) are abstractly
isomorphic to the given groups G.
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Examples of Automorphism Groups of Graphs

Notation We will use the formalistic notation {u, v} (rather
than uv) to represent an edge with endpoints u and v, for reasons
that become clear in §3.

Example Let V (K4) = {a, b, c, d} and let X = K4−{a, c}, the
result of removing edge {a, c} from K4. Then

Aut(X) = {ι, α, β, αβ}

where α interchanges a and c but fixes both b and d, while β
fixes a and c but interchanges b and d. Thus,

Aut(X) ∼= Z2 × Z2

Remark (JG) Z2 × Z2 is the additive group on 2-tuples of
numbers mod 2, with component-wise addition mod 2.

*** REVIEW FROM W4203***

Aut(Kn) ∼= Σn.

Aut(Cn) ∼= Dn.
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Example The automorphism group of the n-cycle Cn is the
dihedral group Dn with 2n elements.

Figure 4: Aut(C5) = D5.

Example [Fr37] The automorphism group of the Petersen
graph is isomorphic to Σ5, the symmetric group on five objects.

Figure 5: The Petersen graph.
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Some Elementary Facts about Automorphism Groups

Fact Let the components of X be X1, . . . , Xk. Then

Aut(X) =
k∏
i=1

Aut(Xi)

(JG) This “fact” is not true except when the components are
mutually non-isomorphic.

Fact For a simple graph X with edge-complement X, we have

Aut(X) = Aut(X)

Fact Given any finite tree, either there is a unique vertex or
there is a unique edge that is fixed by every automorphism.

Exercise Use induction on the diameter of the tree to prove
Fact F3.
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2 Graphs with Given Group

Definitions

A group G of perms of a set S

• acts transitively or is transitive on S if for every x, y ∈
S, there exists α ∈ G such that α(x) = y.

• is vertex-transitive if Aut(X) acts transitively on V (X).

• acts doubly transitively on S if for any two ordered
pairs of distinct elements (x1, x2), (y1, y2) ∈ S × S there
exists α ∈ G such that α(x1) = y1 and α(x2) = y2.

Example Σ5 acts transitively and doubly transitively on the
vertex set of the complete graph K5.

Example Σ5 acts transitively, but NOT doubly transitively,
on the vertex set of the Petersen graph.
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Permutation Group Isomorphism

For i = 1, 2, let Gi be a group of permutations of the set Si. We
say that G1 and G2 are isomorphic as permutation groups
if there exist a group-isomorphism Φ : G1 → G2 and a bijection
f : S1 → S2 such that

f(α(x)) = [Φ(α)](f(x)) for all α ∈ G1, x ∈ S1,

i.e., the diagram in Figure 6.1.1 commutes.

Figure 6: Isomorphism of permutation groups.

Example (revised JG) Aut(C3) and Aut(K1,3) are abstractly
isomorphic, but not isomorphic as permutation groups.

C3 K1,3

Figure 7: C3 and K1,3.

The order of a permutation group G acting on a set S is |G|,
and the degree is |S|.
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Edge-Isomorphism and Edge-Automorphism

An edge-isomorphism from a graph X1 to a graph X2 is a
bijection η : E(X1) → E(X2) such that edges e1 and e2 are
incident with a common vertex of X1 if and only if η(e1) and
η(e2) are incident with a common vertex of X2.

An edge-automorphism is an edge-isomorphism from a graph
to itself.

The set of edge-automorphisms forms a subgroup of the sym-
metric group on E(X); it is called the edge-group of X.

Basic Fact

Every automorphism α of a graph X induces a unique edge-
automorphism ηα; namely, if {u, v} ∈ E(X), then ηα({u, v}) =
{α(u), α(v)}. The converse is not true, for some non-connected
graphs.

More Complicated Facts

Fact [HarPa68] The edge-group of a graph X and Aut(X) are
(abstractly) isomorphic if and only if X has at most one isolated
vertex and K2 is not a component of X.

Fact [Wh32] Let X1 an X2 be connected graphs, neither of
which is isomorphic toK1,3. If there exists an edge-automorphism
from X1 to X2, then X1 and X2 are isomorphic graphs.
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Frucht’s Theorem

Fact [Fr38] Frucht’s Theorem: Given any group G, there
exist infinitely many connected graphs X such that Aut(X) is
(abstractly) isomorphic to G. Moreover, X may be chosen to
be 3-valent [Fr49].

(JG) The trivial group and Z2 are represented by K1 and K2.
What about Z3? For a directed graph, the answer is easy.

A key idea in Frucht’s proof is the construction of “virtual ar-
rows”.

Figure 8: A virtual directed 3-cycle.

(JG) The example above is due to Harary and Palmer (1966),
who proved it is a smallest graph with automorphism group Z3.
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(JG) Frucht’s proof begins with a directed Cayley graph for the
given group. It then uses a slightly different kind of arrow for
the arcs corresponding to each generator.

Figure 9: Another virtual directed 3-cycle.

Sabidussi’s Extensions of Frucht’s Theorem

Fact [Sa57] In Frucht’s Theorem, in addition to having Aut(X)
isomorphic to a given group G, one may further impose that X

• has connectivity κ for any integer κ ≥ 1, or

• has chromatic number c for any integer c ≥ 2 (see §5.1), or

• is r-valent for any integer r ≥ 3, or

• is spanned by a graph Ỹ homeomorphic to a given connected
graph Y .
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Minimum Graph Representations of a Group

A minimum graph representation of a finite group G is a
graphX such that |V (X)| is a smallest graph with Aut(X) ∼= G.
Then µ(G) denotes |V (X)|.

Fact (JG modified) The rigid graph with the fewest vertices is
shown in Figure 2. Thus µ({ι}) = 6.

Fact [Bab74] If G is a nontrivial finite group different from the
cyclic groups of orders 3, 4, and 5, then

µ(G) ≤ 2 |G|

Fact µ(Z3) = 9; µ(Z4) = 10; µ(Z5) = 15. (See [Sa67].)

Exercise Consider the automorphism groups of the 11 simple
graphs with 4 vertices. What is the largest group among them?

Exercise Construct a simple graph G with six vertices such
that Aut(G) ∼= Z2 × Z2 × Z2. Hint: start with a 4-vertex graph
whose automorphism group is Z2 × Z2.
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JG: Cartesian Products of 2-Complexes

A graph is topologically a 1-dim cell complex. The cartesian
product Z = XtuY of two graphs is a reduction from the product
of their underlying cell complexes. The generalization to higher
dimensional cell complexes becomes clear from consideration of
the 2-dimensional case.

Example

X0 : u, v, w, x
X1 : uv, vw, vx, wx

X2 : vwx

Y0 : 1, 2, 3
Y1 : 12, 13, 23
Y2 : 123

u v w

x

1

2

3

X Y
Figure 10: Two 2-dimensional complexes.
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u v w

x

1

2

3

X Y

CARTESIAN PRODUCT of TWO COMPLEXES

Z0 = X0 × Y0

Z1 = X0 × Y1 ∪ X1 × Y0

Z2 = X0 × Y2 ∪ X1 × Y1 ∪ X2 × Y0

Z3 = X1 × Y2 ∪ X2 × Y1

Z4 = X2 × Y2

|Z0| = 4× 3 = 12
|Z1| = 4× 3 + 4× 3 = 24

|Z2| = 4× 1 + 4× 3 + 1× 3 = 19
|Z3| = 4× 1 + 1× 3 = 7
|Z4| = 1× 1 = 1
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If we discard X2 and Y2, then Z2 = X1 × Y1, and then

|Z2| = 4× 3 = 12

What does X × Y look like?

Let’s temporarily exclude edge uv ∈ X. Then we get these 9
0-cells, 18 1-cells, and nine 2-cells.

1 2 3

x

v

w

Figure 11: Partial product.
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The part resulting from edge uv yields 3 other 0-cells, 6 other
1-cells, and 3 other 2-cells.

1 2 3

x

v

w

Figure 12: Other part.

Locally, when you cross K1,n with K2, you get a book with
n pages, whose spine corresponds to the K2 and the n-valent
vertex. Since vertex v has degree 3, you get books with 3 pages.

• The graph-theoretic cartesian product simply discards the
2-cells. In other words, it is the 1-skeleton of the topological
cartesian product.
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3 Groups of Graph Products

In general, a graph product of graphs X and Y is a graph
with vertex set V (X) × V (Y ), whose edge set is determined in
a prescribed way by (and only by) the adjacency relations in
X and in Y . The symbol & indicates a generic graph product
X&Y of graphs X and Y . It has been shown (see [ImIz75]) that
there exist exactly 20 graph products that satisfy this definition.

A graph product & is associative if

(W&X) &Y ∼= W & (X&Y )

for all graphs W,X, Y . Interest is usually restricted to products
that are associative.

Remark In this expository article, Watkins uses notation for
each products that looks something like the result of applying
that product to two copies of the path P3, as shown below in
Figure 13. Elsewhere, the cartesian product of two graphs is al-
most always denoted X×Y . The other three products described
below occur only in specialized works.
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Four commonly used associative graph products

Let Z be a graph product of arbitrary graphs X and Y . Let
x1, x2 be (not necessarily distinct) vertices of X, and let y1, y2

be (not necessarily distinct) vertices of Y . Suppose that

{(x1, y1), (x2, y2)} ∈ E(Z)

In the cartesian product Z = XtuY[
{x1, x2} ∈ E(X)∧y1 = y2

]
or
[
{x1 = x2}∧{y1, y2} ∈ E(Y )

]
.

In the strong product Z = X � Y[
{x1, x2} ∈ E(X) ∧ y1 = y2

]
or
[
x1 = x2 ∧ {y1, y2} ∈ E(Y )

]
or
[
{x1, x2} ∈ E(X) ∧ {y1, y2} ∈ E(Y )

]
.

In the weak product Z = X × Y
{x1, x2} ∈ E(X) and {y1, y2} ∈ V (Y ).

In the lexicographic product Z = X[Y ]
{x1, x2} ∈ E(X) or [x1 = x2 ∧ {y1, y2} ∈ E(Y )].

These four products are illustrated in Figure 6.1.2, when both
X and Y denote the path of length 2.

Figure 13: The four products of the 2-path by the 2-path.
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Primality

A graph X is a divisor of a graph Z (with respect to a product
&) if there exists a graph Y such that

Z = X&Y ∨ Z = Y&X

A graph Z is prime (w.r.t. a given product &) if Z has no
proper divisor, i.e., no divisor other than itself and the graph
consisting of a single vertex.

Graphs X and Y are relatively prime (w.r.t. a product &) if
they have no common proper divisor.

Example CL3 and Q3 are not relatively prime w.r.t. Cartesian
product. They both have K2 as a factor.

Figure 14: CL3 and Q3.
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Fact about decomposition

Fact [Sa60] Every connected graph has a unique prime decom-
position with respect to the cartesian product and with respect
to the strong product.

(JG) Let’s not take unique decompositions for granted. In the
multiplicative group of even numbers, a number is prime if and
only if it is not divisible by 4. However,

36 = 6× 6 = 2× 18
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Facts about automorphisms

Fact The cartesian (respectively, strong) product of two graphs
X and Y is connected if and only if both X and Y are connected.

Fact [Sa60] If X is connected, then Aut(X) is generated by the
automorphisms of its prime divisors with respect to the cartesian
product and the transpositions interchanging isomorphic prime
divisors.

The next Fact is an important corollary.

Fact Let X be the cartesian product

X = X1tu · · · tuXk

of relatively prime connected graphs. Then Aut(X) is the direct
product

k∏
i=1

Aut(Xi)

(JG) For instance,

Aut(C5tuC6) = D5 × D6

Fact Each of the four products X&Y is vertex-transitive if
and only if both X and Y are vertex-transitive.

Further reading

For a comprehensive and up-to-date treatment of all graph prod-
ucts, see [ImKl00].
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4 Transitivity

Definitions

A graph X is edge-transitive if given

e1, e2 ∈ E(X)

there exists an automorphism α ∈ Aut(X) such that

α(e1) = α(e2)

CL3 K1,3

Figure 15: Basic v-trans and e-trans examples.

(JG) We observe that the graph K1,3 is edge-transitive but not
vertex-transitive. Also, CL3 is vertex-transitive but not edge-
transitive, since six edges lie on a 3-cycle and three do not.
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Cartesian products (e.g., CL3 = C3tuK2) are not the only graphs
that are vertex-transitive, but not edge-transitive. For instance,
all circulant graphs are vertex-transitive, but some are not edge-
transitive.

Exercise Prove that circ (8 : 1, 2) is not edge-transitive.

Exercise However, prove that circ (8 : 1, 3) is edge-transitive.

0

1

2

34

5

6

7 0

1

2

34

5

6

7

Figure 16: circ (8 : 1, 2) and circ (8 : 1, 3).
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Fact If a vertex-transitive graph is not connected, then all of
its components are isomorphic and vertex-transitive.

Fact When m 6= n, the graph Km,n is edge-transitive but not
vertex-transitive.

Fact If a graph X is edge-transitive but not vertex-transitive,
then it is bipartite. In this case, Aut(X) induces exactly two
orbits in V (X), namely, the two sides of the bipartition.

(JG) However, it need not be complete bipartite, as illustrated
by the following bipartite graph.

Figure 17: E-transitive but not V-transitive.
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Stabilizers

If G is a group of permutations of a set S and x ∈ S, then the
stabilizer of x (in G) is the subgroup

Gx = {α ∈ G : α(x) = x}

Notation The stabilizer of a vertex u ∈ V (X) in Aut(X) will
be denoted by Autu(X).

Facts

Fact If X is vertex-transitive, then for any u, v ∈ V (X) we
have:

• Autu(X) and Autv(X) are conjugate subgroups of Aut(X);

• |Autu(X)| = |{α ∈ Aut(X) : α(u) = v}|;

• If X is finite, then |Aut(X)| = |Autu(X)| · |V (X)|.

26



4.1 s-Regularity and s-Transitivity

Definitions

Let G be a group of permutations of a set S. We say that G
acts freely on S if Gx = {ι} for all x ∈ S.

A permutation group G acts regularly or is regular if G acts
both transitively and freely.

Facts

Fact If G is regular on S, then

• for all x, y ∈ S, there is a unique α ∈ G such that α(x) = y.

• If S is finite, then |G| = |S|.
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Examples

An m-cage is a smallest 3-valent graph with girth m.

Example The complete graph K4 is the unique 3-cage; K3,3 is
the unique 4-cage.

Example The Petersen graph is 3-regular. It is the unique
5-cage.

Example The unique 6-cage is the Heawood graph H, which
is 4-regular and defined as follows. Let V (H) be the cyclic group
Z14. For j = 0, . . . , 6, let the vertex 2j be adjacent to the three
vertices 2j − 1, , 2j + 1, and 2j + 5.
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