
CS E6204 Lecture 3
Genus Distribution of a Graph

Abstract

The principal genus distribution problem is to count the number
of cellular imbeddings of a given graph. Complete distributions have
been obtained for a few basic families of graphs. Various properties of
genus distributions and of related invariants are examined, especially
the properties of the average genus.

1. Introduction

2. Enumerating imbeddings by surface type

3. Total imbedding distributions

4. Congruence classes

5. The unimodality problem

6. Average genus

7. Stratification of imbeddings

* This lecture is based on Chapter 3 of [BWGT], contributed by
Jonathan L. Gross.
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1. Introduction

An ubiquitous question in topological graph theory:
• can a given graph can be imbedded in a given surface?

G→ Sj ??

This readily extends to the following problem:
• given the graph G and the surface Sj,

count the number of different imbeddings of G→ Sj.

(We are using the Iverson truth function.)∑
ρ

(ρ :

?︷ ︸︸ ︷
G→ Sj) ρ varies over all rotations systems

A contrasting classical problem with its origins in geometry:
• for a fixed surface Sj,

how many different maps are there to Sj,

where what varies is the graph that serves as the 1-skeleton.

In what follows, all imbeddings are taken to be cellular, except
where clear from context that non-cellular imbeddings are under
consideration. Two cellular imbeddings are considered to be the
same if their rotation systems are combinatorially equivalent.
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Definitions

• The number of imbeddings of G in Sh is the num-
ber gh(G) of rotation systems for G that induce a cellular
imbedding in Sh;

• the orientable genus range of a graph G is the set of
integers h for which gh(G) > 0;

• the minimum genus is the number

γmin(G) = min{h : gh(G) > 0}

• the maximum genus is the number

γmax = max{h : gh(G) > 0}

The following result is a variation on an elementary “inter-
mediate value theorem for genus”.

Theorem 1.1 The orientable genus range of a graph G is the
consecutive set of integers

{h : γmin(G) ≤ h ≤ γmax(G)}.

Proof We can change any rotation system of a graph into
any other by effecting a sequence of transpositions of edge-ends,
each of which changes the genus of the induced surface by at
most 1. In particular, there is such a sequence that goes from a
minimum-genus imbedding to a maximum-genus imbedding.
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Definitions The genus distribution of a graph G is the
integer-valued function h 7→ gh(G), and the genus distribu-
tion polynomial of G is

IG(x) =
∑
h≥0

gh(G)xh.

These concepts were introduced by Gross and Furst [GrFu].

Theorem 1.2 For any graph G,∑
h≥0

gh(G) =
∏

v∈V (G)

[deg(v)− 1]!.

Proof The sum on the left and the product on the right both
count each imbedding of G exactly once.

For relatively small graphs, the orientable genus distribution
can be calculated by elementary ad hoc methods. For example,
in Fig. 1, the graph K2 × C3 has six vertices, each of degree 3,
and so the total number of orientable imbeddings is 64 = 26.

genus of surface

number of embeddings

0 1 2

2 38 24
K2 C3x

Figure 1: A graph and its orientable genus distribution.

4



A bar-amalgamation of two disjoint graphs G and H is
obtained from G ∪ H by joining a vertex of G and a vertex of
H with an edge, referred to as the bar, as illustrated in Fig. 2.

Figure 2: A bar-amalgamation of K4 and K5 − e.

The following theorem of Gross and Furst [GrFu] is useful in
simplifying genus distribution calculations.

Theorem 1.3 The genus distribution of a bar-amalgamation of
two graphs is the convolution of their respective genus distribu-
tions, multiplied by the product of the degrees of the two vertices
of the bar (not counting the bar).
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The outcome is very much more complicated when two graphs
are directly amalgamated at a vertex, without the bar. Amal-
gamations at two 2-valent vertices help to construct genus dis-
tributions for 4-regular graphs, a very important case. Pasting
2 : n approaches the ultimate problem of pasting m : n.

[GrKhPo] pasting 2:2

[Gr10a] self-pasting 2:2

[KhPoGr] pasting 2:n

Of course, two graphs can be amalgamated along an edge in
each graph:

[PoKhGr10A] pasting 2-2:2-2

[PoKhGr10A] self-pasting 2-2:2-2
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2. Enumerating Imbeddings by Surface Type

Even at the outset of the programme to provide explicit calcu-
lations of imbedding distributions, it was clear that a variety
of techniques would be needed. In this section, we consider
three infinite families: closed-end ladders, cobblestone paths,
and bouquets.

Closed-end ladders

The closed-end ladder Ln is the graph obtained from the
Cartesian product Pn × K2 by doubling the edges at the ends
of the path, as illustrated in Fig. 4. Such ladder-like graphs
played a crucial role in the solution of the Heawood map-coloring
problem (see Ringel [Rin]).

Figure 3: The 3-rung closed-end ladder L3.

A topological lemma based on a face-tracing argument was
used by Furst, Gross and Statman [FuGrSt] to partition the
possible rotation systems of the ladder Ln according to the in-
duced surface genus. This permitted the number gh(Ln) to be
represented as a sum whose terms are products of binomial co-
efficients.
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A succession of combinatorial identities led to the following
closed formula:

gh (Ln) =

2n−1+h
(
n+ 1− h

h

)
2n+ 2− 3h

n+ 1− h
for h ≤

⌊
n+ 1

2

⌋
,

0 otherwise.

Table 1 shows the genus distribution for some small ladders.

Table 1: The genus distribution of small ladders.

gh(Ln) g0 g1 g2 g3 g4 total
L1 2 2 0 0 0 4
L2 4 12 0 0 0 16
L3 8 40 16 0 0 64
L4 16 112 128 0 0 256
L5 32 288 576 128 0 1024

Subsequently, McGeoch [McG] calculated the genus distribu-
tions of the related families of graphs known as circular ladders
and Möbius ladders. Also, Tesar [Te] calculated the genus dis-
tribution of the family known as Ringel ladders.
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• The method of [PoKhGr10A] and [PoKhGr10A] for recalcu-
lating the genus distributions of these ladder graphs is iterative
edge-amalgamation.

•••

Figure 4: Obtaining a ladder Ln by iterative edge-amalgamation.

Single-root partials of (G, e)

The imbeddings of single-edge-rooted graphs can be differen-
tiated into two distinct types, depending on whether the two
occurrences of the root-edge are in the same or in different fb-
walks of an imbedding. The number gi(G, e) is the sum of the
following single-root partials:

si(G, e) = The number of imbeddings of G such that

e occurs twice on the same fb-walk.

di(G, e) = The number of imbeddings of G such that

e occurs on two different fb-walks.
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Double-root partials of (G, e, f)

Table 2: Double-root partials of (G, e, f).

Partial Counts these imbeddings in Si

ddi(G, e, f) e and f both occur on two fb-walks

dsi(G, e, f) e occurs on two fb-walks and f on one fb-walk

sdi(G, e, f) e occurs on one fb-walk and f on two fb-walks

ssi(G, e, f) e occurs on one fb-walk and f on one fb-walk

Some First-order Sub-partials of (G, e, f)

The following three numbers are called sub-partials of ddi(G, e, f):

dd0
i (G, e, f) = the number of imbeddings of type-ddi such that

neither fb-walk at e is incident on f .

dd′i(G, e, f) = the number of imbeddings of type-ddi such that

exactly one fb-walk at e is incident on f .

dd′′i (G, e, f) = the number of imbeddings of type-ddi such

that both fb-walks at e are incident on f .

In complicated constructions many more sub-partials may be
needed. For closed-end ladders, the only one we need is dd′′i (G, e, f).
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We introduce the use of productions

di(G) ∗ dd′′j (H) −→ 2di+j(W ) + 2si+j+1(W )

si(G) ∗ dd′′j (H) −→ 4di+j(W )

and picture-proofs of their correctness:

Figure 5: di(G) ∗ dd′′
j (H) −→ 2di+j(W ) + 2si+j+1(W )

Figure 6: si(G) ∗ dd′′
j (H) −→ 4di+j(W )
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Cobblestone paths

The cobblestone path Jn is the graph obtained by doubling
each edge of the n-vertex path Pn and then adding a loop at
each end, as illustrated in Fig. 7.

Figure 7: The cobblestone path J3.

The genus distribution of cobblestone paths was calculated
recursively by Furst, Gross and Statman [FuGrSt].

gh(Jn) = 3h · 4n−1
(
n− h
h

)
+ 2 · 3h−1 · 4n−1

(
n− h
h− 1

)
.

This could now by rederived using vertex-amalgamations as in
[GrKhPo]. Table 3 shows the genus distribution for some of the
smaller cobblestone paths.

Table 3: The genus distribution of some cobblestone paths.

gh(Jn) g0 g1 g2 g3 total
J1 4 2 0 0 6
J2 16 20 0 0 36
J3 64 128 24 0 216
J4 256 704 336 0 1296
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Bouquets

The bouquet B` is the graph with one vertex and ` loops, as il-
lustrated in Fig. 8. One of the properties of bouquets important
to topological graph theory is that every regular graph can be
derived by assigning voltages (possibly permutation voltages) to
some bouquet (see Gross and Tucker [GrTuA] [GrTuC]).

  B1   B 2   B 3

Figure 8: Some small bouquets.

Permutation-group algebra is a key to calculating the distri-
bution of imbeddings of bouquets. Gross, Robbins and Tucker
[GrRoTu] established the equation

gh(Bn) = (n− 1)! · 2n−1 · en−2h+1(n)

The quantity ek(`) is the cardinality of the set of permutations
π ∈ Σ2`, corresponding to an arbitrary fixed cycle ζ of length
2` for which there is a full involution β such that π = ζ ◦ β,
and such that π has k cycles. The value of ek(`) is given by a
formula of Jackson [Ja].
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The closed formula above for gh(B`) leads to this recursion:

initial conditions:
g0(B0) = g0(B1) = 1; gh(B0) = gh(B1) = 0 for h ≥ 1;
g0(B2) = 4, g1(B2) = 2; and gh(B2) = 0, for h ≥ 2.

recursion for h > 2:
(`+ 1) gh(B`) = 4(2`− 1)(2`− 3)(`− 1)2(`− 2) gh−1(B`−2)

+ 4(2`− 1)(`− 1) gh(B`−1).

This recursion enables us to calculate the numerical values for
the genus distribution of bouquets in Table 4.

Table 4: The genus distribution of some bouquets.

gh(Jn) g0 g1 g2 total

B0 1 0 0 1
B1 1 0 0 1!
B2 4 2 0 3!
B3 40 80 0 5!
B4 672 3360 1008 7!
B5 16128 161280 185472 9!

Rieper [Rie] extended the group-character approach of [GrRoTu]
in his analysis of the genus distribution of dipoles. (The dipole
D` is the graph with two vertices joined by ` edges.)
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3. Total imbedding distributions

When non-orientable imbeddings of a graph G are also included,
the total number of imbeddings increases by a factor of 2β(G)−1,
since for any given rotation system and fixed spanning tree T ,
each of the β(G) edges not in T may be twisted or untwisted.

The total imbedding distribution of a graph G is the
bivariate polynomial

ÏG(x, y) = IG(x) + ĨG(y) =
∑
h≥0

gh(G)xh +
∑
k≥1

g̃k(G)yk.

The calculation of total imbedding distributions appears to
be quite difficult, in part because the possible twisting of edges
complicates the recurrences that one might derive. In order
to calculate the genus or crosscap number for a given general
rotation system ρ without doing face-tracing, we can choose a
spanning tree T , and then calculate the entries of the overlap
matrix Mρ,T = [mi,j], in which

mi,j =


1 if i 6= j and pure(ρ)

∣∣
T+ei+ej

is non-planar,

−1 if i = j and edge i is twisted,

0 otherwise.

Here, the notation pure(ρ)|T+ei+ej
means the restriction of the

underlying pure part of the rotation system ρ to the subgraph
T + ei + ej. Mohar [Mo] derived the following general property
of the overlap matrix.
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Theorem 3.1 Let G be a graph, let T be a spanning tree of G,
and let ρ be a general rotation system of G. Then

rank(Mρ,T ) =

{
2h if the induced surface S(ρ) is Sh,

k if the induced surface S(ρ) is Nk.

For example, in Fig. 9, the edges of the spanning tree are
labelled 4, 5 and 6. Thus, the rows and columns correspond to
c-otree edges 1, 2 and 3. The cross on the bottom edge indicates
that it is twisted. Since the rank of the overlap matrix is 3 and
the imbedding is non-orientable, the surface for that imbedding
must be N3.

x

overlap 
matrix1

2
3

4
5

6 0  0  1   
0  1  0   
1  0  0   

Figure 9: A graph and its overlap matrix.

At first, the concept of an overlap matrix seemed to be purely
of theoretical interest. Indeed, whereas calculating the surface
type by face-tracing requires O(m) time for a graph with m
edges, calculating the rank of an overlap matrix deteriorates to
O(m2) time.
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However, Chen, Gross and Rieper [ChGrRiA] discovered that
regrouping the total set of imbeddings according to the rank of
the overlap matrix sometimes facilitates calculation of the total
imbedding distribution.

For example, consider a tree T in the ladder graph for which
the co-tree is a path, as in Fig. 10, and in the cobblestone path
graph for which a co-tree is almost a path, as in Fig. 11. These
yield a ‘tridiagonal’ overlap matrix, which is convenient for cal-
culating the rank because there are zeros everywhere except pos-
sibly on entries on a narrow band near the diagonal. Each ‘x’
in the matrix of Fig. 10 indicates an entry that may be either 1
or 0.

1

2 3 4
  

x x 0 0 0 0 0
x x x 0 0 0 0
0 x x x 0 0 0
0 0 x x x 0 0
0 0 0 x x x 0
0 0 0 0 x x x
0 0 0 0 0 x x5 6

7

Figure 10: The ladder L6 with a spanning tree, and the form of the corre-
sponding tridiagonal overlap matrix.

Figure 11: The cobblestone path J5 with a spanning tree.
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The following total imbedding distribution polynomial for
closed-end ladders was obtained in [ChGrRiA]:

2n
∑
yn+1−r

r∏
h=1

[
rd
(

2ih

3

)
+ rd

(
2ih+1

3

)
y
]
− ILn

(
y2
)

+ ILn
(x),

where rd(x) means the nearest integer to x, and the sum is
taken over all r-tuples of positive integers i1, i2, . . . , ir with sum
equal to n+1. This total imbedding distribution polynomial was
obtained for cobblestone paths:

∑
2n+r−1yn+1−r

r∏
h=1

[
rd
(

2ih

3

)
+ rd

(
2ih+1

3

)
y
]
− IJn

(
y2
)

+ IJn
(x).
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4. Congruence Classes

A second enumerative aspect of graph imbeddings regards two
imbeddings as equivalent if they ‘look alike’ when vertex and
edge labels are removed. Two imbeddings ι1 : G → S and ι2 :
G → S are congruent, denoted by ι1 ' ι2, if there exist a
graph automorphism α : G→ G and a surface homeomorphism
η : S → S for which the diagram in Fig. 12 is commutative.

G S

G S

α η

ι 1

ι2

Figure 12: The commutativity condition for an imbedding congruence.

For example, Fig. 13 shows how the sixteen different orientable
imbeddings of the complete graph K4 are partitioned into con-
gruence classes:

two like this in S0 six like this in S1 eight like this in S1

Figure 13: Partitioning the 16 imbeddings of K4 into congruence classes.
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Burnside’s lemma is used to count congruence classes. Each
automorphism of a graph G induces a permutation on the rota-
tion systems of G that preserves the congruence class, but does
not necessarily preserve the equivalence class, as illustrated in
Fig. 14.

1

2
3

4

  

1. 2 3 4
2. 1 3 4
3. 1 2 4
4 . 1 2 3

3

1

2

4

3

4

1

2

(1 2 3)(4)
changes

(1 3)(2 4)
fixes

  

2. 3 1 4
3. 2 1 4
1. 2 3 4
4 . 2 3 1   

3. 4 1 2
4 . 3 1 2
1. 3 4 2
2. 3 4 1

Figure 14: The induced action of two permutations on a rotation system.

Fig. 14 indicates the induced action on a given rotation sys-
tem of the permuations (1 2 3)(4) and (1 3)(2 4). Although rows
1 and 4 of the resulting rotation system for (1 2 3)(4) (lower left)
are the same rotations as in the given rotation system (top), the
rows 2 and 3 are the reverse rotations. By way of contrast, rows
1, 2, 3 and 4 of the resulting rotation system for the permutation
(1 3)(2 4) (lower right) are the same as the corresponding rows
of the given permutation.

Mull, Rieper and White [MuRiWh] showed how to count con-
gruence classes of imbeddings of complete graphs into oriented
surfaces.
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5. The Unimodality Problem

A sequence {am} is unimodal if there exists an integer M such
that

am−1 ≤ am for all m ≤M and am ≥ am+1 for all m ≥M.

A typical unimodal sequence first rises and then falls. A se-
quence {am} is strongly unimodal if its convolution with ev-
ery unimodal sequence yields a unimodal sequence. An equiva-
lent criterion for unimodality (see [KeGe]) is that

a2
m ≥ am+1am−1 for all m.

It is easily proved that every strongly unimodal sequence is uni-
modal, which affirms the appropriateness of the name ‘strongly
unimodal’. All known genus distributions are strongly unimodal.
The pioneering calculations are summarized in the next theorem,
for which the first two families were studied by Furst, Gross and
Statman [FuGrSt] and the third by Gross, Robbins and Tucker
[GrRoTu].

Theorem 5.1 The genus distributions of closed-end ladder graphs,
cobblestone paths, and bouquets are strongly unimodal.
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We observe that an imbedding of the bouquet B` has ` + 1
faces in the sphere S0, ` − 1 faces in the torus S1, ` − 3 faces
in the double-torus S2, and so on. This suggests that the genus
distribution of the bouquet Bn might resemble this sequence of
Stirling cycle numbers[

2n

n+ 1

]
,

[
2n

n− 1

]
,

[
2n

n− 3

]
, · · · ,

where
[
n
k

]
denotes the number of ways to partition n distinct

objects into k cycles.

Using group character theory, Stahl [StA] proved that the
genus distribution of bouquets is asymptotically proportional to
this sequence. He also proved [StC] that the resemblance to
Stirling numbers also holds for various graphs of small diame-
ter, including partial suspensions of trees and of cycles, which
serves as further evidence for unimodality. Whether the genus
distribution of every graph is strongly unimodal remains an in-
teresting open problem.
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6. Average Genus

The average value of the genus of the imbedding surface for
a graph G, taken over all orientable imbeddings, is called the
average genus and denoted by γavg(G).

Obviously, a graph has average genus 0 if and only if it
has maximum genus 0. Thus, in consideration of Nordhaus et
al. [NoRiStWh], a graph has average genus 0 if and only if no
vertex lies on more than one cycle.

As a corollary to Theorem 1.3, Gross and Furst [GrFu] proved
that the average genus acts additively on bar-amalgamations.
(Analogously, both γmin and γmax act additively on bar-amalgam-
ations.)

Theorem 6.1 The average genus of a bar-amalgamation of two
graphs G and H is γavg(G) + γavg(H).
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Suppose that r independent edges of a 2r+s cycle are doubled
and that a loop is added at each vertex not on a doubled edge, as
illustrated in Fig. 15. Such a graph is called a necklace of type
(r, s). Gross, Klein and Rieper [GrKlRi] calculated the average
genus of all such graphs.

Figure 15: A necklace of type (2, 4).

Theorem 6.2 The average genus of a necklace of type (r, s) is
1−

(1
2

)r (2
3

)s
.

Since the number of different necklaces of type (r, s) grows
arbitrarily large as the numbers r and s increase, we infer:

Arbitrarily many non-homeomorphic 2-connected
graphs can have the same average genus.
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By Xuong’s theorem (see Chapter 2), the maximum genus of
a necklace is 1. If r or s increases, then the average genus of a
necklace of type (r, s) approaches 1, which is part of the general
pattern that a randomly chosen imbedding is more likely to be
nearer to the maximum genus than to the minimum genus.

Theorem 6.2 also established the number 1 as the
first known upper limit point of average genus, thereby
raising the questions of the prevalence of upper limit points and
of the existence of lower limit points. These are discussed in
greater detail below.

The six smallest values of the average genus of any graph are

1

3
,

1

2
,

5

9
,

2

3
,

19

27
and

3

4

(see [GrKlRi]). Fig. 16 shows a necklace realizing each of them.

1
3

1
2

5
9

2
3

19
27

3
4

Figure 16: The graphs with the six smallest positive values of the average
genus.
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Chen and Gross [ChGrC] found that, except for necklaces,
there are just eight 2-connected graphs of average genus less
than 1. Their proof is based on the minimum number of paths
that one must add to a cycle to obtain a given 2-connected
graph — that is, on the number of steps in a ‘Whitney synthesis’
(also called an ‘ear decomposition’). The bouquet B3, the dipole
D4 and the complete graph K4 have average genus 2

3 , 5
6 and 7

8 ,
respectively. Fig. 17 shows the other five such graphs and their
average genus. In combination with Theorem 1.3, this yields a
complete classification of those graphs with average genus less
than 1.

5
6

8
9

8
9

3
4

17
18

Figure 17: The five sporadic 2-connected graphs with
average genus less than 1.

26



Further, it is proved in [ChGrC] that there are exactly three 2-
connected graphs with average genus exactly 1. They are shown
in Fig. 18.

Figure 18: The three 2-connected graphs with average genus 1.

Theorem 6.2 inspired an investigation of the possible limit
points of average genus, and Chen and Gross [ChGrA] obtained
the following results for 3-connected graphs (simple or not) and
for simple 2-connected graphs.

Theorem 6.3 For each real number r, there are only finitely
many 3-connected graphs and finitely many simple 2-connected
graphs with average genus less than r.

Consequently, there are only finitely many 3-connected or simple
2-connected graphs with the same average genus. Moreover, the
sets of values of average genus of these large families of graphs
have no limit points.
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In a sequel, Chen and Gross [ChGrB] gave a systematic method
for constructing upper limit points, which we now describe. Let
e be an edge of a graph. We attach an open ear to edge e if
we insert two new vertices in the interior of e and then double
the edge between them; the two new vertices are called the ends
of that open ear. Similarly, we attach a closed ear to e if we
insert one new vertex w in the interior of e and then attach a
loop at w; the vertex w is called the end of that closed ear.
Fig. 19 illustrates both kinds of ear attachments.

e

closed ears

open ears

Figure 19: Three open ears and two closed ears serially attached to an edge
e.
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We say that r open ears and s closed ears are attached se-
rially to the edge e if the ends of the ears are all distinct, and
if no ear has an end between the two ends of an open ear. The-
orem 6.4 provides a means for constructing upper limit points;
in fact, all limit points arise from this construction.

Theorem 6.4 Let G be a 2-connected graph, and let G+ be a
graph obtained by serially attaching ears to an edge of G. Then

γavg(G) < γavg(G+) < γavg(G) + 1.

Chen and Gross [ChGrD] concluded their series of papers
by proving that the set of values of average genus taken
over all graphs has no lower limit points. A linear-time
algorithm for isomorphism testing of graphs of bounded average
genus was derived by Chen [Ch].
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Some bounds have been obtained for the average genus. In
this summary of what is known about bounds, it has been con-
jectured that part (c) can be improved. In the following theo-
rem, part (a) is due to Gross, Klein and Rieper [GrKlRi] and
parts (b) and (c) are due to Chen, Gross and Rieper [ChGrRiB]:

Theorem 6.5 Let G be a graph.

(a) If H is a subgraph of G, then γavg(H) ≤ γavg(G).

(b) If G is 3-regular, then γavg(G) ≥ 1
2γmax(G).

(c) If G is a simple, 2-connected graph, then γavg(G) ≥ 1
16β(G),

where β(G) is the cycle rank.
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7. Stratification of Imbeddings

Superimposing an adjacency structure on the distribution of ori-
entable imbeddings was first explored as a possible aid to calcu-
lating the minimum genus and maximum genus of a graph. It
subsequently appeared to offer some insight into the problem of
deciding whether two graphs are isomorphic.

For any graph G, the stratified graph SG is defined as
follows. The vertices of SG are the orientable imbeddings of G.
Two imbeddings ι1 and ι2 are V -adjacent if there is a vertex
v of G for which moving a single edge-end at v is sufficient to
transform a rotation system for ι1 into a rotation system for
ι2; they are E-adjacent if there is an edge e of G for which
moving both ends of e can transform a rotation system for ι1
into a rotation system for ι2. In either case, the two imbeddings
are adjacent.

The induced subgraph of SG on the set of imbeddings into
the surface Sh is called the hth stratum of SG and is denoted
by ShG. The cardinality of ShG is clearly gh(G).
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Gross and Tucker [GrTuB] proved that trying to descend to
the minimum genus can be obstructed by traps, which are false
minima, from which it is impossible to descend to a global min-
imum without first ascending. The depth of a trap is the
minimum increment in genus that one must ascend on any path
to the true minimum.

Traps of arbitrary depth were subsequently constructed by
Gross and Rieper [GrRi]. This is consistent with Thomassen’s
result [Th] that the minimum genus problem is NP-complete.
However, Gross and Rieper [GrRi] also proved that no false max-
ima exist, so that it is possible to ascend from any imbedding
to a maximum imbedding, even though strict ascent might not
always be possible. This is consistent with the work of Furst,
Gross, and McGeoch [FuGrMc] that establishes a polynomial-
time algorithm for the maximum genus.

Gross and Tucker [GrTuD] proved that the link of each ver-
tex of the stratified graph is a complete invariant of the graph.
They also demonstrated how two graphs with similar genus dis-
tributions may have markedly different imbedding strata. These
findings support the plausibility of a probabilistic approach to
graph isomorphism testing, based on the sampling of higher-
order imbedding distribution data.
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