
CS E6204 Lecture 2
Minimum and Maximum Genus

Abstract

Minimum graph imbeddings have always been a
dominant concern of topological graph theory. Maximum graph imbed-
dings were among the first of the new topics to emerge at the onset of
the modern era. The theoretical importance of these topics has been
enhanced by impressive connections to such areas as VLSI design,
computer algorithms and complexity, and computer graphics.

1. Fundamentals
2. Upper Bounds: Planarity and Upper-Imbeddability
3. Lower Bounds for Min and Max Genus
4. Kuratowski-Type Theorems
5. Algorithmic Issues

* This lecture is based on chapter [Ch04] contributed by Jianer
Chen of Texas A&M to the Handbook of Graph Theory.
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1 Fundamentals

The graphs in our discussion may have multiple adjacencies
or self-adjacencies. All graphs in our discussion are assumed
implicitly to be connected. We recall some definitions from
Lecture 1 (on weaving, links, and general rotation systems)
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Figure 1: Two inequivalent rotation systems for K4.

An imbedding of a graph G in an orientable surface S is a
continuous one-to-one function ρ : G → S from a topological
representation of the graph G into the surface S.

The image of an imbedding ρ : G→ S is the subspace ρ(G)
of the surface S. Sometimes, one refers to ρ(G) either as “the
graph” or as “the imbedding”.
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Each connected component of S − ρ(G) is called a face of the
imbedding ρ(G).

The imbedding is cellular if the interior of each face of the
imbedding is homeomorphic to a 2-dimensional open disk. (Our
discussion will be restricted to cellular graph imbeddings.)

The genus of the imbedding ρ : G → Sg is the genus g of
the imbedding surface.
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The minimum genus γmin(G) (or, simply, the genus γ(G))
of a graph G is the minimum integer g such that there exists
an imbedding of G into the orientable surface Sg of genus g.

The maximum genus γmax(G) of a graph G is the maximum
integer g such that there exists a (cellular) imbedding of G into
the orientable surface of genus g.

The number |E| − |V | + 1 is called the cycle rank (or the
Betti number) of the graph G, denoted β(G). This is best
regarded conceptually as the number of non-tree edges relative
to a spanning tree for G.

B4 D5 K4tree T

Figure 2: Tree, bouquet, and dipole.

Example 1.1 For a graph of any of the types in Figure 2

graph γmin γmax(T ) = 0 β(T ) = 0

tree T 0 0 0
bouquet Bn 0

⌊
n
2

⌋
n

dipole Dn 0
⌊

n−1
2

⌋
n− 1

complete graph Kn

⌈
(n−3)(n−4)

12

⌉ ⌊
(n−1)(n−2)

4

⌋ (
n−1

2

)
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Some General Facts

We recall from Lecture 1 the operation of adding a handle to a
surface.

Figure 3: Adding a handle.

Theorem 1.2 Any orientable surface is homeomorphic to one
of the surfaces Sg obtained by adding g handles to the sphere.

Proof. [Br23].

• The genus of any imbedding of a graph G is an integer between
0 and bβ(G)/2c, where β(G) is the cycle rank of the graph G.

• Inserting an edge into a graph imbedding can never decrease
the imbedding genus, and deleting an edge can never increase
the imbedding genus.
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Theorem 1.3 (Euler Polyhedral Equation) An orientable imbed-
ding ρ : G→ S of a graph G with vertex set V , edge set E, face
set F , and genus g satisfies the relation

|V | − |E|+ |F | = 2− 2g

Proof. (e.g., see [GrTu87]).

Theorem 1.4 (Additivity of Minimum Genus) Let

{B1, B2, · · · , Bk}
be the set of 2-connected components of a graph G. Then

γmin(G) =
k∑

i=1

γmin(Bi)

Proof. [BHKY62].

Theorem 1.5 (Additivity of Maximum Genus) Let

{B1, B2, · · · , Bk}
be the set of 2-edge-connected components of a graph G. Then

γmax(G) =
k∑

i=1

γmax(Bi)

Proof. [NoStWh71].

Accordingly, in most cases, we may concentrate on the minimum
genus of 2-connected graphs and on the maximum genus of 2-
edge-connected graphs.
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2 Planarity and Upper-Imbeddability

There has been extensive research on graphs of min genus 0 and
on graphs G of max genus bβ(G)/2c. Such graphs have special
names.

• A planar graph is a graph of minimum genus 0.

• An upper-imbeddable graph is a graph G of maximum
genus bβ(G)/2c.

Theorem 2.1 (Kuratowski’s theorem) A graph is planar if
and only if it contains no subgraph homeomorphic to either K5

or K3,3.

Proof. [Ku30]

• A minor of a graph G is a graph H that can be obtained
from G by a sequence of edge-deletions and contractions.

Theorem 2.2 A graph is planar if and only if it has neither K5

nor K3,3 as a minor.

Proof. [Wa37]
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Theorem 2.3 There is essentially only one way to imbed a 3-
connected planar graph in the plane, up to homeomorphism of
pairs.

Proof. [Wh33]

Theorem 2.4 Every planar graph has a planar imbedding in the
geometric plane in which every edge is a straight line segment.

Proof. [Fa48]

Theorem 2.5 Every 3-connected planar graph has a planar imbed-
ding in the geometric plane in which every face, except the outer
face, is a convex polygon.

Proof. [Tu60]
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Theorem 2.6 A graph G is upper-imbeddable if and only if G
has a spanning tree T such that the co-tree G − T has at most
one odd component.

Proof. [NoStWh71]

Example It follows that the dumbbell graph has maximum
genus 0.

Figure 4: The dumbbell graph.

CLASSSROOM EXERCISE

Show that the circular ladder CL4 is upper imbeddable.
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Theorem 2.7 (Ku74) Every 4-edge-connected graph contains
two edge-disjoint spanning trees.

CLASSROOM EXERCISE

Show that C4 × C4 has two disjoint spanning trees.

Figure 5: C4 × C4.

Corollary 2.8 Every 4-edge-connected graph is upper-imbeddable.

Proof. This follows immediately from the two preceding facts,
and is commonly ascribed to [Ku74].

Remark The study of upper-imbeddability has been focused
on graphs that are not 4-edge connected, due to the preceding
corollary.
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CLASSROOM EXERCISE

Show that K3,3 does not have two disjoint spanning trees, but
that it is upper-imbeddable.

Exercise The complete bipartite graph K3,n is an upper-
imbeddable graph. Construct a spanning tree for K3,5 whose
complement is connected.

Remark See [ChArGr96] for a general construction of 3-edge
connected graphs that are not upper-imbeddable.
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Deficiency

Early study of upper-imbeddability was focused on derivation
of the upper-imbeddability of special graph classes. It became
clear later that most of these results could be obtained from
effective characterizations of maximum genus. There have been
several productive characterizations of maximum genus.

• The co-tree for a spanning tree T of a graph G is the edge
complement G−T . (The co-tree G−T need not be connected.)

• A connected component H of the co-tree G − T is called an
even component (resp. odd component) if the number of
edges in H is even (resp. odd).

• The deficiency ξ(G, T ) of a spanning tree T is defined to
be the number of odd components of the co-tree G− T .

4 2 0

Figure 6: spanning trees of deficiency 4, 2, and 0.
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• [Xu79a] The deficiency ξ(G) of the graph G is defined
to be the minimum of ξ(G, T ) over all spanning trees T of the
graph G.

• A spanning tree T of G is called a Xuong tree if its deficiency
ξ(G, T ) of T is equal to the deficiency ξ(G) of the graph G.

Theorem 2.9 (Xu79a) The maximum genus γmax(G) of a graph
G is equal to (β(G)− ξ(G))/2.

Remark (JG) The number of spanning trees for Kn is nn−2.
Therefore, the Xuong deficiency should not be calculated by
exhaustion.

• Two edges are adjacent if they share a common end.

Theorem 2.10 Two adjacent edges e1 and e2 can be inserted
into an imbedding ρ(G) of a graph G so thaat the imbedding
genus is increased.

Theorem 2.11 (ChKa99) A graph G has a spanning tree such
that the co-tree G−T contains at least γmax(G) pairs of adjacent
edges.
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Example The complete graphs Kn are upper-imbeddable for
all n ≥ 1.

Proof. Use K1,n−1 as a spanning tree. The cotree is Kn−1.

Example The complete bipartite graphs Kn,m are upper-
imbeddable for all n,m ≥ 1.

Proof. Use the bar-amalgamation K1,n−1—K1,m−1 as a span-
ning tree. The cotree is Kn−1,m−1.

Figure 7: Kn and Km,n.

Theorem 2.12 (SkNe89) k-regular vertex-transitive graphs of
girth g such that k ≥ 4 or g ≥ 4 are upper-imbeddable.

Theorem 2.13 (Skov91) Loopless graphs of diameter 2 are
upper-imbeddable.

Theorem 2.14 (HuLi00a) (4k + 2)-regular graphs and (2k)-
regular bipartite graphs are upper-imbeddable.
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3 Lower Bounds on Min and Max Genus

The Euler Polyhedral Equation

|V | − |E|+ |F | = 2− 2g

implies that

• a minimum genus imbedding of a graph G is an imbedding
with the largest number of faces; and

• a maximum genus imbedding of G is one with the minimum
number of faces.

Lower Bounds for Minimum Genus

• The size of a face f , denoted size(f) is the number of edge-
steps in its boundary walk. (If f is an n-gon, then size(f) = n;
that is, each edge in the boundary walk of f that occurs twice
is counted twice.)

• The girth of a graph G is the length of a shortest cycle in
G. It is undefined for a tree.
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Fact Edge-Face Equality: For any imbedded graph
G = 〈V,E〉 with face set F ,

2|E| =
∑
f∈F

size(f)

This is because each edge of G is counted twice on the right size.

Fact The girth of a simple graph is at least 3.

Fact The girth of a simple bipartite graph is at least 4.

Fact For any imbedded graph G = 〈V,E〉 with face set F , and
for any face f ∈ F ,

girth(G) ≤ size(f)

Fact Edge-Face Inequality: For any imbedded graph
G = 〈V,E〉 with face set F ,

2|E| ≥ girth(G) · |F |

This follows from the Edge-Face Equality and the previous Fact.
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Fact For any graph G = 〈V,E〉,

γmin(G) ≥ (girth(G)− 2) · |E|
2girth(G)

− |V |
2

+ 1

Fact Let G be a simple graph. Then

γmin(G) ≥ |E|
6
− |V |

2
+ 1

Fact Let G be a simple bipartite graph. Then

γmin(G) ≥ |E|
4
− |V |

2
+ 1
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Fact If a simple graph G = 〈V,E〉 has a triangulated orientable
imbedding, then the imbedding is min-genus and

γmin(G) =
|E|
6
− |V |

2
+ 1

Fact A quadrangulated orientable imbedding for a simple bi-
partite graph G = 〈V,E〉 is min-genus imbedding and

γmin(G) =
|E|
4
− |V |

2
+ 1

Remark A classical approach to computing the minimum genus
of a simple (non-bipartite) graph is to try to construct a trian-
gulated imbedding of the graph, or for a simple bipartite graph,
a quadrangulated imbedding.

Example Construct K7 → S1 with a voltage graph.

1

1

2 2

0 1 2

1 2

3 4 5 6 0

2 3 4 5 6 0

3

Figure 8: Constructing K7 → S1 with a voltage graph.

Remark This approach has been very successful in deriving
minimum genus of well-known graph classes. Voltage graphs
are presently the main tool for constructing triangulations and
quadrangulations.
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JG-insert: min genus of K10 −K6

When the standard lower bound is unattainable for a graph G,
it can be less straightforward to calculate the minimum genus.
One of the simpler approaches is to find a subgraph of G whose
minimum genus exceeds the standard lower bound. We consider
the graph K10 −K6.

We obtain the standard lower bound

γmin(K10 −K6) ≥
45− 15

6
− 10

2
+ 1 = 1

Trying to draw an imbedding of K10 −K6 into S1 is doomed to
failure. However, we can increase the lower bound by observing
that K6,4 is a subgraph of K10 −K6. It follows that

γmin(K10 −K6) ≥ γmin(K6,4) =

⌈
(6− 2)(4− 2)

4

⌉
= 2

Of course, this improved lower bound might not be achievable,
but this is progress.
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Proofs (or sketches of proofs) of most of the following facts ap-
pear in [GrTu87].

Fact [RiYo68] For the complete graph Kn, with n ≥ 3,

γmin(Kn) =

⌈
(n− 3)(n− 4)

12

⌉
(JG) This is the standard lower bound. The imbeddings were
constructed with combinatorial current graphs, which are pre-
decessors of topological current graphs, which are the duals of
voltage graphs.

• The Heawood number of a surface S with Euler character-
istic c and chromatic number chr(S) is

H(S) =

⌊
7 +
√

49− 24c

2

⌋
Fact [RiYo68] (Formerly called the Heawood Conjecture) The
chromatic number of every surface except the Klein bottle N2 is
equal to its Heawood number.
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Fact Let G be a graph of chromatic number c, then

γmin(G) ≥ (c2 − 7c+ 12)

12

Fact [Ri65] For m,n ≥ 2,

γmin(Km,n) =

⌈
(n− 2)(n− 2)

4

⌉
Fact [Ri55] For the cube graph Qn of n vertices, with n ≥ 3,

γmin(Qn) = 1 + 2n−3(n− 4)
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Lower Bounds on Maximum Genus

By the additivity theorem for maximum genus, we may confine
our interest to graphs that are 2-connected. Subdivision and
smoothing do not change the maximum genus. The maximum
genus of a 4-edge connected graph G is bβ(G)/2c. This leads
us to focus on lower bounds for the maximum genus of graphs
of minimum degree at least 3 and are not 4-edge-connected.

• [GrKlRi93] A necklace of type (r, s) is a graph obtained
from an (r + s)-cycle by doubling r disjoint edges and then
attaching a self-loop at each of the s vertices that is not an
endpoint of a doubled edge.

Figure 9: a type-(4, 0) necklace and a type-(1, 3) necklace.
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Fact The cycle rank of a necklace of type (r, s) is r + s+ 1.

Fact [GrKlRi93] The max genus of every necklace is 1.

Fact [ChGr95] The necklace construction is essentially the only
way to construct graphs of large cycle rank and small maximum
genus.
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Fact [ChKaGr96] Let G be a simple graph of minimum degree
at least 3. Then

γmax(G) ≥
⌈
β(G)

4

⌉
This bound is tight, since there are infinitely many simple graphs
G of minimum degree 3 whose maximum genus is arbitrarily
close to β(G)/4.

Fact Let G be a 2-edge connected simple graph of minimum
degree at least 3. Then

γmax(G) ≥
⌈
β(G)

3

⌉
(See [Ar+02].) The next Fact indicates that this result cannot
be improved for 3-edge-connected graphs.

Fact [ChKaGr96] There exists an infinite class of 3-edge-connected
simple graphs G whose maximum genus is equal to dβ(G)/3e.

Fact [Ar+02] Let G be a 3-edge connected graph. Then

γmax(G) ≥
⌈
β(G)

3

⌉
This bound is tight, by the previous Fact.
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4 Kuratowski-Type Theorems

Erdós and König [Koni36] asked whether there is a Kuratowski-
type theorem for the class of graphs that are imbeddable (not
necessarily 2-cell imbeddable) in a fixed surface S, by which they
meant a finite set of forbidden subgraphs. Due to the work of
Robertson and Seymour, we now discuss forbidden minors.

Complete Forbidden Sets for Minimum Genus

• A class F of graphs is closed under minors if for each
graph G in F , all minors of G are also in F .

• Let F be a graph class closed under minors. A graph G is a
minimal forbidden minor for F if G is not in F but every
proper minor of G is in F .

• Let F be a graph class that is closed under minors. A setM
of minimal forbidden minors is a complete set of forbidden
minors for F if for every graph G that is not in F , there exists
a graph in M that is a minor of G.
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Fact The graphs K5 and K3,3 make a complete set of forbidden
minors for the class of planar graphs. (This is an alternative
version of the Kuratowski Theorem.)

Fact [GlHu78] There exists a finite complete set of forbidden
minors for the class of graphs that can be imbedded in the pro-
jective plane N1. A complete list can be found in [GlHuWa79]
or [Ar81].

Fact [ArHu89] For every non-orientable surface N , there is a
finite set FN of forbidden minors for the class of graphs that are
imbeddable in N .

Fact [RoSe88] (Formerly known as Wagner’s Conjecture) Any
class of graphs closed under minors has a finite complete set of
forbidden minors. An extraordinary series of papers ([RoSe85,
RoSe88, RoSe90a, RoSe90b, RoSe95]) led to this result.
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Fact For every integer g ≥ 0, the class of graphs whose mini-
mum genus is bounded by g is closed under minors.

Fact [RoSe90b] For every integer g ≥ 0, there is a finite com-
plete set of minimal forbidden minors for the class of graphs of
minimum genus bounded by g.

Fact [Se93] The size of a minimum complete set of minimal
forbidden minors for graphs of min genus bounded by g is at

most 22(6g+9)9

.

Remark Contracting an edge e of G on a planar imbedding
ρ(G) can be accomplished by continuously “shrinking” the edge
e on the plane until its two ends are identified. This yields a
planar imbedding of the contracted graph G/e. Moreover, edge
deletion does not increase imbedding genus. Thus, the class of
planar graphs is closed under minors. Using a similar argument,
one can show that the minimum genus of a minor of a graph G

can never be larger than γmin(G).

Remark A constructive proof for Seymour’s theorem (imme-
diately above) was developed by Mohar [Mo99]. There has been
further effort to simplify the proof [Th97b]. On the other hand,
it has remained as a challenge, even for very small g such as
g = 1, to give a good estimation on the number of graphs or the
size of the graphs in the set of minimal forbidden minors.
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Complete Forbidden Sets for Maximum Genus

Fact Classes of graphs of given maximum genus are not closed
under minors.

Example The bouquet B2 of two self-loops (i.e., the graph with
a single vertex and two self-loops) is a minor of the dumbbell
graph DB (i.e., the graph consisting of an edge [u, v] plus two
self-loops on u and v, respectively). However, it is easy to verify
that

γmax(B2) = 1 and that γmax(DB) = 0

DB B2

Figure 10: Contracting DB to B2.
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• Let G be a graph and let v be a degree-2 vertex with two
neighbors u and w in G (u and w could be the same vertex).
We say that a graph G′ is obtained from G by smoothing the
vertex v if G′ is constructed from G by removing the vertex v
then adding a new edge connecting the vertices u and w.

• Two graphs G1 and G2 are homeomorphic if they become
isomorphic after smoothing all degree-2 vertices. It is easy to see
that two homeomorphic graphs have the same minimum genus
and the same maximum genus.

Fact A 2-edge-connected graph G has maximum genus 0 if and
only if G is a cycle.

Fact [NoStWh71] A graph G has maximum genus 0 if and
only if no vertex is contained in two different cycles in G. Such
a graph has been called a cactus.
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Fact [ChGr93] A 2-edge connected graph G has maximum
genus 1 if and only if G is homeomorphic either to a necklace or
to one of the graphs in Figure 11.

Figure 11: Graphs of maximum genus 1 that are not necklaces.

Fact A graph G has maximum genus 1 if and only if all but one
of its 2-edge connected components are either a cycle or a single
vertex, and the exceptional 2-edge connected component of G
is homeomorphic either to a necklace or to one of the graphs in
Figure 11.
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5 Algorithmic Issues

Fellows and Langston [FeLa88] indicated that the min genus
problem for graphs of bounded minimum genus can be solved
in polynomial time, based on Robertson and Seymour’s results
in graph minor theory. In fact, they showed a much stronger
result, that for any graph class C closed under minors, there is
a polynomial-time algorithm that tests the membership for the
class C.

Minimum Genus Testing

Fact [HoTa74] There is a linear-time algorithm that either
constructs a planar imbedding for a given graph or reports that
the graph is not planar.

Fact [HoWo74] There is a linear-time algorithm that tests the
isomorphism of planar graphs.
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Fact [RoSe95] Let H be a fixed graph. There is a polynomial-
time algorithm that for a given graph G decides whether H is a
minor of G.

Fact For any closed under minors graph class C, there is a
polynomial time algorithm that tests the membership for the
class C.

Fact [Mo99] For each fixed integer g, there is a linear-time algo-
rithm that, for a given graph G, either constructs an imbedding
of genus bounded by g for G or reports that no such an imbed-
ding exists. (This constructive result of Mohar significantly im-
proves the corollary to [RoSe95] that a polynomial-time algo-
rithm exists.)

Fact [Th89] The following problem is NP-complete:
given a graph G and an integer k, decide whether
γmin(G) ≤ k.

Fact [Th97a] The problem of deciding whether a graph of
maximum degree 3 has its minimum genus bounded by a given
integer k is NP-complete.
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Maximum Genus Testing

Fact [FuGrMc88] There is a polynomial-time algorithm that
constructs a maximum genus imbedding for a given graph.

Remark Direct calculation from the Xuong and Nebeský char-
acterizations requires exponential time. The polynomial-time
algorithm is based on a reduction to the linear matroid parity
problem, which is solvable in polynomial time [GaSt85].

Fact [Ch94] For any fixed integer g, there is a linear time
algorithm that decides whether a given graph has maximum
genus g, and if so, the algorithm constructs a maximum genus
imbedding for the graph.

Fact [Ch94] For any fixed integer g, there is a linear time
isomorphism algorithm for graphs of maximum genus bounded
by g.
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Fact [GrRi91] Starting from any imbedding of a graph, there
is a sequence of edge deletion-then-reinsertion operations that
never decreases the imbedding genus and eventually leads to a
maximum genus imbedding of the graph. Thus, there are no
graph imbeddings that are “strictly locally maximal” but not
globally maximum for imbedding genus.

Fact [GrRi91] There exist “strictly locally minimal”
graph imbeddings that are not minimum genus imbeddings, that
are traps of arbitrarily great depth, serving as obstructions.

Remark The two facts immediately above together explain the
difference in complexity of the calculations of minimum genus
and maximum genus.
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[Wa37] K. Wagner, Über eine Eigenschaft der ebenen
Komplexe, Math. Ann. 114 (1937), 570–590.

[Wh32] H. Whitney, Non-separable and planar graphs, Trans.
Amer. Math. Soc. 34 (1932), 339–362.

[Wh33] H. Whitney, A set of topological invariants for graphs,
Amer. J. Math. 55 (1933), 231–235.

Version: 10:26 January 29, 2010

36


