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11.11.5 Automorphisms and Coverings

Every map M has a universal cover that is a classi-
cal tiling of the sphere, of the Euclidean plane, or of the
hyperbolic plane (unit disc). We also address the relation
between a group acting as automorphisms of a map and a
group acting as homeomorphisms of the surface.

In this section, the classical Euclidean and hyperbolic
tessellations are regarded as infinite maps, even though, by
our definition, a map is a finite cell-complex.

DEFINITIONS

D1: An automorphism of a map M is an isomorphism
of M onto itself. The automorphisms form a group under
composition, denoted Aut(M).

D2: A map covering f : M; — M, is a topological
covering (see §7.4) of the respective surfaces that takes
the graph of M; onto the graph of Ms, with ramification
points possible only at vertices and face centers.
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D3: The tessellation {p,q} is the tesselation (unique,
if it exists) of the sphere or plane into
regular p-gons, g-valence.

1 1 1
Tessalation {p, ¢} tiles the sphere if — + — > —_ i.e,

p q 2
{p, q} = {3, 3} tetrahedron
{4, 3} octahedron
{5, 3} dodecahedron
{3, 4} cube
{3, 5} icosahedron
: : L1 1 1
tiles the Fuclidean plane if — + — = —
p g
{p, ¢} = {4, 4} rectangular
{6, 3} hexagonal
{3, 6} triangular
1

1 1
or tiles the hyperbolic plane (unit disc) if — + - < 5"
p g

(See Fact F36 below for an example.)
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Automorphisms of Tesselations

JG: triangle groups — a natural model

The automophisms of a tesselation by a triangle whose
angles are

=3
»w |

T 1 1 1
n where -+ -4+ - =1

9
r S t

Y

form the triangle group A(r,s,t). As a first example, we
consider r = s =t =3

Fig. JG-1: The orbit of an equilateral triangle
under alternating reflections through two sides.

EXPLANATION
r 1s reflection thru the red edge
g is reflection thru the green edge

b is reflection thru the blue edge
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r 1s reflection thru the red edge
g is reflection thru the green edge

b is reflection thru the blue edge

We observe in the figure that (gr)® = ¢. Similarly (bg)® =«
and (rb)3 = 1. We also observe that the angle between any
two sides is /3. The group with presentation

b, g,r : b>=g*>=r*=1, (bg)’ = (gr)° = (rb)® =)
is known as the triangle group A(3,3,3).
Remark: Since there are sequences of flips that move the

principal triangle arbitrarily far from the origin, it follows
that this triangle group is infinite.
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The automophisms of a tesselation by a triangle whose
angles are

T m T
2 4 A4
form the triangle group A(4,4,2), with presentation

(b, g,r « 0" =g" =17 =1, (bg)* = (g7)" = (rb)* = 1)

The automophisms of a tesselation by a triangle whose
angles are

T m T
2 3 6
form the triangle group A(6,3,2), with presentation

(b, g, r : 0" =g" =17 =1, (bg)® = (g7)" = (rb)* = 1)

D4: The Coxeter group W (p, q) is the group with pre-
sentation by three generators pg, p1, p2 and the relations

po = p1 = ps = (pop1)" = (p1p2)? = (papo)? =1  (3)
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EXAMPLES

E1: Both torus maps M and M™ in Figure 7.6.1 are cov-
erings of the tetrahedral map in Figure 7.6.4. The cover-
ing by M is ramified at vertices and the covering by M*
is ramified at face centers. Both are 2-fold coverings, that
is, each unramified point of the sphere is covered by two

points of the torus.
1 3

M M
Fig 11.11.1 Review: A torus map and its dual.
The map M* is obtained by assigning voltage 1 mod 2 to

every edge of K4 — Sg. The map M is obtained as the
dual of map M™*.



8 Chapter 11 TOPOLOGICAL GRAPH THEORY

FACTS

F4: Every map M of type {p, ¢} has an unramified cov-
ering by the tessellation {p,q}. For example, the map
on Ny of type {5,5} in Figure 11.11.2, is covered by the
tessellation {5,5} of the hyperbolic plane. (The map is
obtained by identifying like-labeled edges in the figure.)

2 O

Fig 11.11.2 The regular self-dual map {5,5}3
and its universal cover {5,5}.

F6: [Hul892] Hurwitz formula: If a group I' acts on
a surface of Fuler characteristic ¢ < 0, then

IT'| < —84c

F8: [Tu83] If a group I' acts on an orientable surface
S, then some Cayley graph G of I' imbeds in S, and the
natural action of I' on G (by left multiplication) extends
to an action of I' on S.
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11.11.6 Combinatorial Schemes

The definition of a map in §10.1 as a cell complex is
topological. A strictly combinatorial description, although
less intuitive, is often easier to apply. Three such schemes
are described: rotation scheme, permutation scheme, and
graph encoded map.

DEFINITIONS
D5: A rotation scheme (G, p) consists of a graph G

and a set of cyclic permutation (called rotations)

p = {potvevic)

of the edge-ends incident on each vertex v. Any map with
graph (G imbedded on an orientable surface (this can be
extended to include nonorientable imbeddings) is repre-
sentable by such a scheme.

D6: The map of a rotation scheme is obtained as
follows. Given a directed edge e; = (vg,v1) of GG, consider
the cycle consisting of successive directed edges

€1, €2y ..., €y = €1

where e; = (v;_1,v;) and

eir1 = puled)
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Each (undirected) edge lies on exactly two such cycles.
Regarding each cycle as the boundary of a polygonal 2-
cell and gluing together 2-cells along paired edges results
in an orientable surface in which G is imbedded.

Conversely, the rotation scheme of a map M on an
orientable surface is (G, p), where G is the graph of M
and p, 1is the cyclic permutation of the edge-ends incident
on vertex v induced by the orientation of the surface, say
clockwise.

Remark: Any process of pasting polygons together along
edges yields a 2-complex.

e Having each edge occur exactly twice in the set of
polygon boundaries implies that the boundary of that
2-complex is empty.

e Having a cyclic rotation of the edges incident at each
vertex guarantees that there are no singularities of
dimension zero.

That is, the 2-complex specified by a rotation scheme with
cyclic permutations of the edge-ends at each vertex is a
surface, rather than a pseudosurface.
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D7: An abstract permutation scheme (7w,0) on a
finite set X consists of permutations 7 and ¢ acting on
X, such that each orbit of m has length 2 and such that
the permutation group H(m,o) generated by ¢ and 7 is
transitive on X.

D8: The vertices, edges, and faces of the permutation
scheme (7, 0) are the cycles of o, m and o om, respectively.

Example 11.11.3: Let X = {1,2,..., 8}.

o = (1,2)(3,4)(5,6)(7,8)
T = (1,3,5,8)(2,4,6)(7)
com = (1,4,5,2,3,6,8,7)

Thus, the permutation group generated by o, m, and com
is transitive.

Remark: This abstract nonsense verion of a scheme rep-
resents the following toroidal map.

FIGURE GOES HERE
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11.11.7 Symmetry of Maps

Regular maps, those enjoying the greatest symmetry,
are the surface analogues of the Platonic solids. Also dis-
cussed are symmetrical and vertex-transitive maps.

DEFINITIONS
D15: A flag of amap M is an ordered triple (Fy, F, F5)

of mutually incident faces of dimensions 0,1 and 2, respec-
tively.

(JG) A concrete perspective is that a flag of M is a face
of the barycentric subdivision of M, as illustrated below.

Fig. JG-2: A toroidal map and its flags.

Exer 11.11.1 (JG) What is the face-width of the map
of Fig JG-27 What is the edge-width?
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D16: A map M is a regular map if Aut(M) acts tran-
sitively on the set of flags.

(JG) Although Aut(M) acts transitively on the (black)
vertices of G(M), it does not act transitively on the re-
gions, since it cannot map an 8-gon to a 4-gon. Thus, it
does not map a flag in the 8-gon to a flag in the 4-gon.
Thus, it is not regular.

(JG) By way of contrast, all five Platonic maps are regular.
For any fixed flag F', every automorphism is determined
by the choice of a flag onto which F' is to be mapped. It
follows, for instance, that the cube map has 48 automor-
phisms, because it has 48 flags.
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D17: A map M is a symmetrical map if Aut(M) has
at most two orbits in its action on the set of flags.

(JG) The map M of JG-2 is not symmetrical. Since
Aut(M) does not map an edge that occurs twice on the
8-gon to an edge on the 4-gon, it cannot map a flag with
one kind of edge to a flag with the other kind.
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D18: A Cayley map for a group I' with generator
set A, is an imbedding of the Cayley graph Gal', using
a rotation scheme. The cyclic permutation on the edges
A* = AUA™! incident at each vertex must be the same
at each vertex (see Example 21).

REMARKS

R5: For a symmetrical map M, the automorphism
group Aut(M) acts transitively on the set of vertices, on
the set of edges, and on the set of faces.
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EXAMPLES

E5: The regular maps on the sphere are the boundary
complexes of the five Platonic solids which have types

{3,3}, {3,4}, {4,3}, {3,5}, {5,3}
respectively, plus the infinite families of (non-polyhedral)
maps of types {p,2},{2,p}, p > 0.

E6: Since every map on the projective plane has a 2-fold
covering by a map on the sphere (Fact 51), it follows from
Example 11.11.5 that there are four regular maps on the
projective plane of types {3,4},{4,3},{3,5},{5,3} and in-
finite families of types {p,2} and {2,p}, where
p = 2 mod 4.

Fig. JG-3: Regular maps of types {4,3} and {3,4}
in the projective plane.

Exer 11.11.2 (JG) Draw a regular map of type {2p, 2}
and another of type {2,2p}, both in the projective plane.
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E7: There are 3 infinite families of regular torus maps of
types {3,6},{6,3} and {4,4}. For example, the maps in
Figure 11.11.1 are of types {3,6} and {6, 3}.

Exer 11.11.3 (JG) Use voltage graphs to construct in-
finite families of regular torus maps of types {3,6} and

{4,4}.
*** Rest of Page is Read Only ***

E&: [CoDo01] used a network of computers to determine
all regular maps on orientable surfaces of genus 2 to 15

and all regular maps on nonorientable surfaces from genus
4 to 30.

E9: The Kepler-Poinsot regular star-polyhedra —
see Figure 11.11.3 — are self-intersecting realizations of
regular maps. In the notation of Fact 60 below, these
maps are {5,5|3} (12 pentagons on a surface of genus
4 — great dodecahedron and small stellated dodecahe-
dron), {5,3}10 (12 pentagons on the torus — great stel-
lated dodecahedron) and {3,5}1¢ (20 triangles on the torus
— great icosahedron).

Fig 11.11.3 Star polyhedra.
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E10: [ScWi85, ScWi86] From the history of automor-
phic functions come two regular maps of genus 3, the 1879
Klein map {7,3}s composed of 24 heptagons with au-
tomorphism group PGL(2,7), and the 1880 Dyck map
{8,3}s composed of 12 octagons (shown in dual form in
Figure 11.11.4).

Fig 11.11.4 Dyck’s map {3,7}s.
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D19: A map is a chiral map if it is symmetrical, but
not regular.

(JG) Fig 14 contains a chiral map.

E11: Figure 11.11.5 is a chiral map on the torus. Oppo-
site sides of the square are to be identified. This map is
presented as the Cayley map of the cyclic group 75 =
{0,1,2,3,4} with generating set A = {1,2} and cycle
7=(—121 —2)on A*.

0 0

0 0

Fig 11.11.5 A chiral map on the torus given
as a Cayley map of Zs.

Denoting an edge by a pair of vertices and a face by its
four vertices, the flags (1,12,1234) and (2,12,1234) are in
two different orbits under the action of the automorphism
group acting on the set of flags. There is no automorphism
that leaves edge 12 and face 1234 fixed and takes vertex 1
to vertex 2.
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E12: Coxeter and others noticed that regular maps fre-
quently occur as coverings of smaller regular maps

on other surfaces. For example, the regular torus maps
{3,6}4 and {6,3}4 in Figure 11.11.1 are 2-fold coverings
of the tetrahedral map {3,3} on the sphere. Construc-
tions of families of regular maps using coverings appear in

[JoSu00], [Si00], [Vi84], and [Wi78] among others.
FACTS
F12: A map M with f; edges has exactly 4f; flags.

F13: In Aut(M), the stabilizer of any flag is trivial.

F14: For any map M with f; edges, the two immediately
preceding facts imply that

|Aut(M)| < 4f1

with equality if and only if M is regular. In this sense,
the regular maps have the largest possible automorphism

group.
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F15: On each orientable surface there is a regular map.

F16: For a regular map on an orientable surface, half
the automorphisms act as orientation-preserving homeo-
morphisms of the surface and half as orientation-reversing.

F17: Not every nonorientable surface has a regular map;
for example, there are no regular maps on the surfaces with
nonorientable genus 2 and 3.

F18: [Vi83b], [Wi78a] Every nonorientable regular map
has a unique 2-fold unramified covering by a regular ori-
entable map.

F19: No chiral map exists on a nonorientable surface.

F20: For any surface S with Euler characteristic
c(S) <0

there are at most finitely many regular maps. This follows
from the Hurwitz formula.
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F21: [Vi83b] For any pair (p, q) such that

1 N 1 < 1

p q = 2
there are infinitely many regular maps of type {p,q}.
[NeSkO1] subsequently showed that these maps may be

chosen to have arbitrarily large face-width.

F22: [Wi89] There is a regular map with complete graph
K, if and only if n = 2, 3,4, 6.

F23: [Bi71] There is a symmetrical map with complete
graph K, if and only if n is a prime power and, for each
prime power, the symmetrical map is unique.

F27. Any Cayley map of a group I' is vertex transitive,
[' acting as a group of automorphism of the Cayley map
by left multiplication.

F28: The double torus S, has the interesting property
that only finitely many groups act (as a group of home-
omorphisms) on Ss, but there are infinitely many vertex-
transitive (Cayley graphs) with genus 2.

F29: [Th91],[Badl] For each g > 3, there are only finitely
many vertex-transitive graphs of orientable genus g while
there are infinitely many of genus 0,1 and 2.
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11.11.8 Enumeration

W. T. Tutte [Tu68] pioneered map enumeration in
the 1960’s. Explicit results for maps on the sphere appear
below.

DEFINITIONS

D20: A rooted map is a map in which a flag has been
distinguished.

D21: A rooted map is a near-triangulation if every
nonroot face is a 3-gon.
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EXAMPLES

E15: For the sphere, the 2-connected rooted maps with
4 edges are shown in the first row of Figure 11.11.6. The
first four of these comprise all 2-connected rooted maps
with 3 vertices and 3 faces. The root face is the outer
face, the root vertex and edge are in boldface.

NANMNS |
SECECRS

Fig 11.11.6 Counting maps on the sphere.

E16: On the second row of Figure 11.11.6 are the rooted
near triangulations with 4 inner faces and a root face with
2 edges. The root face is the outer face; the root edge is
the bottom edge; and the root vertex is in boldface.
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FACTS

F30: [Tut63] The number of rooted maps on the sphere
with n > 0 edges is

2.37(2n)!

~ nl(n+2)!

g(n)

F31: [Tut63] The number of 2-connected rooted maps
on the sphere with n > 1 edges is

2(3n — 3)!
n!(2n —1)!

F32: [N. Wormald] (see [GoJa83]) The number of 2-
edge-connected rooted maps on the sphere with n > 0
edges is
2(4n 4 1)!
(n+ 1)!(3n + 2)!

F33: [BrTu64] The number of 2-connected rooted maps
on the sphere with n > 1 vertices and k£ > 2 faces is
(2n 4+ k —5)1(2k + n — 5)!
(n— D!k —1)I(2n — 3)!1(2k — 3)!
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11.11.9 Paths and Cycles in Maps

This section covers three topics involving paths and
cycles:

e the Lipton-Tarjan separator theorem;

e the existence of nonrevisiting paths in polyhedral
maps;

e the decomposition of maps along cycles in the graph.

The third topic is related to a result of Robertson and
Seymour on minors.

DEFINITIONS

D22: A path p in the graph of a map M is said to be
nonrevisiting if pN F' is connected for each face F' of M.

D23: A surface S has the nonrevisiting path prop-
erty if, for any polyhedral map M on S, any two vertices
of M are joined by a nonrevisiting path.

D24: A map M is a map minor of a map M’ if M
can be obtained from M’ by a sequence of edge contrac-
tions and deletions. The operations of edge deletion and
edge contraction on a graph can be extended to a surface
imbedding of the graph in an obvious way.
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EXAMPLE

E17: A polyhedral map on the surface Sy that lacks the
nonrevisiting path property appears in Figure 11.11.7 be-
low. (The map is obtained by gluing along like labeled
edges.) There is no nonrevisiting path from z to y.

4 A 1 B 3 A
[ &% L
F
Fl Fz F5 G
Ds B 4 » * s 2
X ¥
F F F F
3 1 7 3
3 ¢ 3 ¢ 1 D

C 1 D 3 D 2 A 4
3 A 1 B 4 B 2 C
Fig 11.11.7 A map on S that does not satisfy
the non-revisiting path property.

(JG) To show that the path z, B, 4, y revisits face Fy, it
suffices to show that x,4 € F}, but B ¢ Fj.

Exer 11.11.4 (JG) What face does the path z, A4, 2, y
revisit?
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FACTS ABOUT SEPARATORS

F35: [LiTa79] Planar Separator Theorem: In a pla-
nar graph with n vertices, there is a set of at most

2V 2n

vertices whose removal leaves no component with more
than
2n/3

vertices.

F36: [AlSeTh94| Let M be a loopless map on the sphere
with n vertices. Then there is a simple closed curve 7 on
the surface of the sphere passing through at most

2
kﬁg\/Zn

vertices (and no other points of the graph) such that each

of the two open disks bounded by 7 contain at most
2n/3 — k/2

vertices. This result slightly improves the Lipton-Tarjan

separator theorem.

F37: [GiHuTa84] A map of genus g contains a set of at
most

O(Vgn)
vertices whose removal leaves no component of the graph
with more than

2n/3
vertices. This generalizes the Lipton-Tarjan theorem to
maps on orientable surfaces of higher genus.
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FACTS ABOUT NONREVISITING PATHS

F38: [PuVi98] For polyhedral maps, the nonrevisiting
path property holds for the

sphere, torus, projective plane and Klein bottle.

It fails for all other surfaces except possibly the nonori-
entable surface of genus 3 (see [PuVi96] and Example
E27).

F39: The nonrevisiting path property holds for every
polyhedral map with face-width at least 4.

FACTS ABOUT DISJOINT CYCLES

F40: [RoSe88] Let My be a map on a surface S other
than the sphere. There exists a constant k£ such that, for
any map M on S with fw(M) > k, My is a map minor
of M. The following two results provide values for the
constant k when the given map M| consists of certain sets
of disjoint cycles.

F41: [Sc93] A map M on the torus with face-width w
contains |3w/4| disjoint noncontractible cycles.
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F42: [BrMoRi96] For general surfaces there exist |w/2]
pairwise disjoint contractible cycles in the graph of any
map M, all containing a particular face, | (w —1)/2]| pair-
wise disjoint, pairwise homotopic, surface nonseparating
cycles, and |(w —1)/8] — 1 pairwise disjoint, pairwise ho-
motopic, surface separating, noncontractible cycles. (It
is unknown whether any map of orientable genus g > 2
with face-width at least 3 must contain a noncontractible
surface separating cycle.)

F43: [Bar88] Every polyhedral map on the torus (pro-
jective plane, Klein bottle) is isomorphic to the complex
obtained by identifying the boundaries of two faces of a 3-
polytope (cross-identifying one face of a 3-polytope, cross-
identifying two faces of a 3-polytope).

F44: [Yu97] (see also [Th93]) If d is a positive integer and
M is a map on S, of face-width at least 8(d + 1)(29 — 1),
then the graph of M contains a collection of induced cy-
cles C'1,Cy,...,C, such that the distance between distinct
cycles is at least d and cutting along the cycles results in
a map on the sphere. This generalizes Fact 11.11.43.

F45: [Sc91]| Schrijver proved necessary and sufficient
conditions (conjecture by Lovasz and Seymour) for the
existence of pairwise disjoint cycles Cj,...,C}) on the
graph of a map M homotopic to given closed curves
C1,...,C} on the surface.
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REMARK

R7: The Lipton-Tarjan separator theorem has applica-
tions to divide-and-conquer algorithms. Nonrevisiting pathsjj
arise in complexity issues for edge following linear pro-
gramming algorithms like the simplex method.
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