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INTRODUCTION

Among the many contributors to the theory of maps
are Archimedes, Kepler, Euler, Poinsot, de Morgan,
Hamilton, Dyck, Klein, Heawood, Hurwitz, Steinitz,
Whitney, Koebe, Tutte, Coxeter, and Grunbaum. General
references on maps include [BoLi95], [BrSc97], [CoMo57],
[GrTu87], [MoThO01], and [WhO1].

TERMINOLOGY: In topological graph theory, we study
invariants of a fixed graph, whose imbeddings may range
over many surafces. In topological map theory, we
study the invariants of a fixed surface, usually from a
polygonal perspective in which the 1-skeleton may vary.
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10.10.1 Maps and Polyhedra Maps

Some basic notions are map and polyhedral map, du-
ality, isomorphism, face and edge-width. The existence
and uniqueness of a map with a given graph is addressed.

DEFINITIONS

D1: A map M on a surface S is a finite cell-complex
whose underlying topological space is S. The surface of a

map M is denoted |M|.

D2: The graph of the map M is its 1-skeleton. It is
denoted G := G(M).

Remark: The 1-skeleton must be connected, because
each 2-cell is homeomorphic to the unit disk.

D3: Maps M; and My are isomorphic if there is a
homeomorphism of the respective surfaces that induces
an isomorphism of the respective graphs.

Notation: M; ~ M>.

Example 10.10.1: Triangulations and quadrangulations
of a surface are maps on the surface.
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D4: The vertices and edges of a map M are the ver-
tices and edges, respectively, of its graph G(M).

D5: The faces of a map M are the connected compo-

nents of | M|\ G(M).

D6: The 0-, 1-, and 2-dimensional faces of a map
M are its vertices, edges and faces, respectively.

D7: Given a map M on a surface S, the dual map M*
is a map on the same surface 5,

e whose vertex set V* consists of one point interior to

each face of M and

e whose edge set E* consists, for each edge e of M, of
an edge e* crossing e and joining the vertices of V'*
that correspond to the faces incident with e.
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D8: A polyhedral map M, generalizing the notion of
a convex polyhedron, is a map

e whose face boundaries are cycles, and

e such that any two distinct face boundaries are either
disjoint or meet in either a single edge or vertex.

Example 10.10.2: All three maps in Figure 10.10.1 are
non-polyhedral.

Fig 10.10.1 Three non-polyhedral maps.

e The boundary of map A is not a cycle.
o Two 2-cells of map B meet in two edges.

e The boundary of toroidal map C' is not a cycle.
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D9: The face-width of a map M, denoted fw(M), is
the minimum number of points |7 N G(M)| over all non-
contractible simple closed curves 7 on the surface.

D10: The edge-width of a map M, denoted ew(M),
is the length of a shortest cycle in G(M) that is noncon-
tractible on the surface.

D11: A large-edge-width (LEW) map is a map
whose edge-width is greater than the number of edges in
any face boundary.

Fig 10.10.2 A map with face-width 2 and edge-width

(JG) The intuition is that a plane is “infinitely wide” and
that the larger the width, the more a map will tend to
share characteristics with a planar map.

(JG) Face-width and edge-width are not defined for planar
maps, because there are no non-contractible curves, and
the minimum of the empty set is undefined.
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EXAMPLES

E3: A map M on the torus and the dual map M* ap-
pear in Figure 10.10.3. (The torus is obtained by identi-

fying like labeled edges on the boundary of the polygon.)
Neither M nor M* is polyhedral. (JG: show why not!)

1 3 1

M M

Fig 10.10.3 A torus map and its dual.

(JG) The face-width of map M is 2. A curve that starts at
vertex 2 at the left, arcs slightly upward into the interior
of a triangle then downward to the unlabeled vertex, then
arcs slightly downward into the interior of the opposite
triangle then back upward to the other copy of vertex 2,
intersects the graph only twice. The 2-cycle from vertex
2 to itself is non-separating, so the edge-width is 2.

Exer 10.10.1 (JG) What are the face-width and edge-
width of map M x7?
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E4: Figure 10.10.4 shows two nonisomorphic maps on
the sphere that have isomorphic 2-connected 1-skeletons.
The 1-skeletons are not 3-connected. The maps are related

by a Whitney flip.

Fig 10.10.4 Maps on the sphere with the
same 2-connected graph.
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E5: Figure 10.10.5 shows two polyhedral maps on the
projective plane with isomorphic 3-connected graphs. (A
projective plane is commonly depicted as a disc with an-
tipodal points identified.)

Fig 10.10.5 Maps on the sphere with the
same 3-connected graph.

This example demonstrates that the analogy to the Whit-
ney uniqueness theorem (Fact 6) fails for imbedding 3-
connected graphs in the projective plane.

(JG: Prove that the 1-skeletons are isomorphic.)



10 Chapter 10 TOPOLOGICAL GRAPH THEORY

REMARKS

R1: Face-width, introduced in [RoSe88|, is a measure
of locally planarity, or of how dense the graph is on the
surface, or of how well the graph “represents” the surface.

R2: The concept of map has been extended to cell-
complexes whose underlying topological space is a man-
ifold of dimension greater than 2. This includes, in par-
ticular, the boundary complex of any polytope. The gen-
eralization to higher dimensions, though natural and in-
teresting, is omitted here.

R3: A map may have multiple edges, self-loops, and ver-
tices of degree 1 or 2. A polyhedral map, however, can
have none of these.

Moveover, in a polyhedral map, the closure of each face is
topologically a closed disc, because the face boundary is a
cycle.
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FACTS

F1: Euler’s formula For any map M with f, vertices,
f1 edges, fo faces and characteristic ¢(M),

fo—fi+f2 = (M)
F2: If M is a map, then (M*)* = M.
F3: If M is a map, then fw(M*) = fw(M).

F4: Map M is polyhedral if and only if its graph G(M) is
3-connected and fw(M) > 3. Moreover, M is polyhedral
if and only if its dual is polyhedral.

F5: Every connected graph GG admits a map.

The rotation scheme described in §10.10.6 gives a system-
atic method for obtaining all 2-cell imbeddings of G.

F6: [Wh32] Whitney Uniqueness Theorem:
A 3-connected, planar graph has a unique imbedding on
the sphere.

F7: [Th90] A uniqueness theorem for general surfaces: if
two LEW maps M; and M, with the same 1-skeleton, then
|My| = |Ms], i.e., they have the same surface. Moreover,
if the graph is 3-connected, then M; ~ M.
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REMARKS

R4: According to Fact 5 above, every connected graph
has a 2-cell imbedding on a surface.

Whether a graph can be imbedded on a surface such that
the face boundaries are (simple) cycles is problematic (see
the conjectures below).

R5: [SeTh96] gives a uniqueness result similar to Fact 6
(Whitney unique imbedding thm) for maps with suffi-
ciently large face-width as a function of the genus.

[Ar92] provides an example, for every pair of integers k, b,
of two maps M;, Ms with the same k-connected graph
such that fw(M;p), fw(Ms2) > b and |M;| # |Maz|. Thus,
the [SeTh96]-uniqueness result depends on the face-width
exceeding an increasing function of the genus.
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CONJECTURES

The Cycle Double Cover Conjecture: Every
2-connected graph contains a set C of cycles such that
every edge is contained in exactly two cycles of C.

The Strong Imbedding Conjecture: Every
2-connected graph can be imbedded on a surface so that
each face is bounded by a cycle in the graph. The strong
imbedding conjecture implies the Cycle Double Cover
Conjecture.

Remark: The Cycle Double Cover Conjecture says that
every 2-connected graph can be the 1-skeleton of a cellular
decomposition of a pseudosurface.

Fig 10.10.6 Pseudosurfaces: pinched disk and pinched torus.
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10.10.2 Cell Counts, Face Inventory, De-
grees

Elementary equations hold among the basic parame-
ters of a map. This section asks,

1. when are these necessary conditions also sufficient for
the existence of a map with these parameters, and,

2. when can the map be imbedded in Euclidean space E3
or E* such that the faces are plane convex polygons.

The classic results for maps on the sphere are Eberhard’s
theorem of 1891 and Steinitz’s theorem of 1922.

DEFINITIONS

D12: A map is of type

{p,q}

if each face has p edge incidences (JG: size p) and each
vertex has ¢ edge incidences (JG: degree q).

Remark: No global symmetry is implied; in fact, the
automorphism group of the map, as defined in §10.10.5,
may be trivial.
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D13: The cell-distribution vector (f-vector) of a
map M is the 3-tuple

(f07 f17 f2)

where fq, f1, fo are the numbers of vertices, edges, and
faces of M, respectively.

D14: The face-size sequence (p-sequence) of a poly-
hedral map M is the sequence

{pi}i>s

where p; is the number of i-gonal faces in M.

D15: The vertex-degree sequence (v-sequence) of
a polyhedral map M is the sequence

{viti>s

where v; is the number of vertices of degree ¢ in M.
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EXAMPLES

E6: The map M from Figure 10.10.3 is of type {3,6}
with face vector (4,12,8). Its dual M* is of type {6,3}
with face vector (8,12,4).

1 3 1

M M
Fig 10.10.1 A torus map and its dual.

E7: The maps from Figure 10.10.6 both have v-sequence
(6,3), but the first has p-sequence (0, 6,0, 1) while the sec-
ond has p-sequence (1,3, 3).

B

Fig 10.10.3 Maps on the sphere with the
same 3-connected graph.
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D16: A polyhedral map M is simplicial (or a triangu-
lation) if the boundary of each face is a 3-cycle.

D17: A polyhedral map M is simple if its graph is 3-
regular.

D18: A geometric realization (realization) of a poly-
hedral map M is an imbedding of M into Euclidean space
E? (no self intersection) such that each face is a plane
convex polygon and that adjacent faces are not coplanar.

E8: Five maps on the sphere and their corresponding
3-dimensional realizations appear in Figure 10.10.7.

Fig 10.10.7 The Platonic solids as realizations of maps.
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FACTS

F8: The f-vector, the p-sequence and the v-sequence sat-
isfy the following elementary equations:

e Sum the number of vertices of each degree.

Z'Ui = fo

e Sum the number of faces of each size.

sz‘ = f2

e Kuler’s thm on degree sum and its dual.

Y ipi = 2f1 = ) v
F9: For an orientable map M of genus g, with and choice

of real numbers o, > 0, such that a + 3 = 1, Euler’s
formula implies that

D (ei—2wi+ ) (Bi—2)p; = 4(g—1) (1)

Example 10.10.9: For M a simple map on Sy, taking
a = 1/3, we have

> (6—i)p; = 12 (2)

Exer 10.10.2 (JG) Prove Fact F9.
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F10: [Eb1891] Eberhard’s Theorem: Condition (2)
above is sufficient for the existence of a sphere map, in the
following sense: if a face-size sequence

{pi|i>3,1#6} satisfies 2(6 — k)pk — 12
k6

then 3 a value of pg such that {p;|i > 3} is the face-size-
sequence of a 3-regular polyhedral map on the sphere.

Remark: There is no known generalization of Eberhard’s
theorem to arbitrary surfaces.

Example 10.10.10: We are given 1 3-gon, 4 4-gons, and
1 5-gon, we calculate:

F'=06+ps

1
E=_(1:3+4-441:5+6-pg) = 12+ 3ps

Using V — E 4+ F = 2, we calculate
V=2+(12+3ps) — (6+ps) = 8+ 2ps

for p = 0, we draw the following sphere map:
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F11: [St22] Steinitz’s Theorem: FEvery polyhedral
map on the sphere is isomorphic to the boundary complex
of a 3-dimensional polytope. Thus, any polyhedral map
on the sphere has a realization in E°.
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10.10.3 Map Coloring

The most famous results on map coloring are the Four
Color Theorem for the sphere and the Heawood Map Col-
oring Theorem, which is the generalization of the Four
Color Theorem to surfaces of higher genus. Also in this
section are a few results on coloring densely imbedded
graphs.

DEFINITION

D19: The chromatic number x(5) of a surface S is
the least number of colors sufficient to properly color the
faces of any map on S. By duality, it is also the least
number of colors sufficient to properly color the vertices
of any map on S. In this section, coloring will mean vertex
coloring.
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FACTS
F14: [ApHa76] Four Color Theorem: x(Sp) = 4.
F15: [Fr34] x(Ny) = 6.

F16: [RiYo68] Heawood Map Coloring Theorem:
For every surface S except the Klein bottle No,

X(5) = V i @J

where c is the Euler characteristic of S. The right-hand
side of the equation is called the Heawood formula.
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F17: A graph G imbeddable on the torus with
ew(M) > 4

1s H-colorable. It is not known whether this same state-
ment holds for surfaces of higher genus.

Example 10.10.11: The essentially unique imbedding
K7 — 57 has a non-contractible 3-cycle. Of course, its
chromatic number is 7.

F18: [Th93] Any graph imbeddable on S, with
ew(M) > 214946

is H-colorable.

F19: [Th97] For a fixed surface S, there is a polynomial-
time algorithm to decide if a map on .S can be 5-colored.

F20: Even on the sphere, the problem of deciding
whether a map can be 3-colored is NP-complete.

F21: [RSST96] On the sphere, a 4-coloring can be found
in O(n?) steps.
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REMARKS

R6: The problem of determining the chromatic number
of the sphere appeared in a 1852 letter from Augustus de
Morgan to Sir William Hamilton, and was likely due to
Francis Guthrie, the brother of a student of de Morgan.

R7: The computer dependent proof of Appel and Haken
[ApHa76] that four colors suffice was simplified consider-
ably [RSST97] (but is still computer dependent).

R8: That the formula in the Heawood Map Coloring
Theorem gives an upper bound on x(S) was proved by
Heawood [Hel890].

R9: That there exist graphs that actually require the
number of colors given by that formula is a consequence
of the formula for the genus of complete graphs due to

Ringel and Youngs [RiYo68|.

R10: Whether there is a polynomial-time algorithm for
deciding whether a map on an arbitrary surface can be
4-colored is unknown.
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EXAMPLES

E12: Figure 10.10.8a (preview) is a map on the projec-
tive plane that requires 6 colors for a proper coloring. This
shows that x(Ny) > 6.

o

Fig 10.10.9 Minimal triangulations of the projective plane.

E13: Figure 10.10.8 is map on the torus that requires 7
colors. This shows that x(S1) > 7. In fact, x(N1) = 6
and x(S51) =7, in accordance with Fact 23.

1 2 3 4 5 6 7 1
3 4 5 6 7 1 2 3

Fig 10.10.8 A map on the torus whose graph is A7.
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E14: An example of Fisk [Fi78] shows that no 4-color
analogue of Thomassen’s result (Fact 18 above) can hold.
See Figure 10.10.9, where the torus is obtained by identi-
fying opposite sides of the square.

Fig 10.10.9 A graph on the torus with exactly two
odd-degree vertices that is not 4-colorable.

Remark: It is not easy to show that the graph above
requires more than 4 colors. It is even harder to show that
a graph that is n X n in this pattern would also require
more than 4 colors.
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10.10.4 Minimal Maps

A map can be quite “degenerate”, for example, the
map on the sphere with 2 vertices, 1 edge, and 1 face.
Polyhedral maps (and maps with edge-width or face-width
bounded from below) cannot be this small. This section
concerns maps that are in some sense minimal — either
with respect to the number of vertices, or with respect to
being polyhedral, or with respect to having edge-width k.
Also covered in this section are weakly neighborly polyhe-
dral maps.

DEFINITIONS

D20: A polyhedral map is neighborly if every pair of
distinct vertices is joined by an edge.

D21: A polyhedral map is weakly neighborly (abbr. a
wnp-map) if every two vertices are contained on a face.
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D22: The operation of edge-contraction for a trian-
gulation, and its inverse operation vertex-splitting, are
depicted in Figure 10.10.10. After contracting an edge in
a triangulation, the map may no longer be a triangula-
tion, i.e., no longer polyhedral; this occurs if the edge is
contained in a 3-cycle that is not a face boundary or if the
map is the tetrahedral map.

D23: A minimal triangulation of a surface S is a tri-
angulation such that the contraction of any edge results
in a map that is no longer polyhedral.

D24: A k-minimal triangulation is a triangulation
with edge-width k, such that each edge is contained in a
noncontractible k-cycle. (Except on the sphere, minimal
and 3-minimal are equivalent.)

H

Fig 10.10.10 Edge contraction and vertex-splitting
in a triangulation.
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EXAMPLES

E15: The only wnp-maps on the sphere are the bound-
ary complexes of the pyramids and triangular prism.

E16: There are 5 wnp-maps on S; and none on .Ss.

E17: The number of minimal triangulations for various
surfaces are as follows:

So has 1 (the tetrahedral map)
N; has 2 (see Figure 10.10.11)

S1 has 21
No has 25.
— | T
a b

Fig 10.10.11 The minimal triangulations
of the projective plane.
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FACTS

F22: If the map M with fy vertices and Euler charac-
teristic c¢ is polyhedral, then

£y > [7%-\/49—246-‘
0 = 9 ’

and this lower bound is attained for all surfaces except S5,

N5, and N3. By duality the same bound holds for fs.

F23: The neighborly polyhedral maps attain the bound
in Fact 10.10.22.

F24: [AlBr86] Each surface admits at most finitely many
wnp-maps. (See Example 8.)
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F25: [BaEd89] The set of minimal triangulations is finite
for every fixed surface. (See Example 11.) In other words,
for each surface, there is a finite set of triangulations from
which any triangulation on that surface can be generated
by vertex splittings.

F26: For any £ > 3, the set of k-minimal graphs on a
fixed surface is finite. ([MoThO01] provides a proof.)
REMARK

R11: [Br90] has provided a (non-tight) lower bound
for the number f; of edges for a polyhedral map of Euler
characteristic c.
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