
CS E6204 Lecture 1
Computer-Graphics Models

for Woven Images on Surfaces

Abstract

A construct from topological graph theory called graph rotation
systems is extended into a solid mathematical model for the develop-
ment of an interactive-graphics cyclic-weaving system. It involves a
systematic exploration and characterization of dynamic surgery opera-
tions on graph rotation systems, such as edge-insertion, edge-deletion,
and edge-twisting. This talk explains the underlying mathematics and
some high-level aspects of the programming system for the interactive-
graphics system.

* This lecture is based on a research paper [ACXG09] presented
at SIGGRAPH 2009 in New Orleans.
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1 Introduction

The following images were created by a system (TopMod) that
is based on the mathematical model presented here.

Figure 1: Weaves on 3D-meshes.

Several recent papers [AkCh00, AkChSr00, AkChSr03, ACSE01] on graphics
by my co-authors Ergun Akleman and Jianer Chen use classical topological
graph theory [GrTu87, Wh01], especially graph rotation systems, as a solid
mathematical basis for 3D-mesh modeling and sculpturing systems.
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Some advantages of using this formal mathematical model as a
basis for software application development:

(A1) universal: its techniques can be adopted by any existing
modeling software system;

(A2) robust: it never generates invalid non-manifold struc-
tures;

(A3) powerful: it can perform all necessary topological surgery
operations;

(A4) it has simple and intuitive primary operations;

(A5) many secondary operations based on the built-in pri-
mary operations can be readily implemented at the user-
level.
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2 Links, surfaces, and cyclic weaving

Definition. A link σ : C → R3 is a homeomorphism from the
union C = ∪{c1, . . . , ck} of a set of disjoint circles into R3. A
knot is a link with only one component.

Definition. A projection of a link onto a surface S ⊂ R3 is
an immersion σ : C → S, with the following properties:

• ∃ finitely many singular points, each called a crossing ;

• each crossing is a 2-to-1 singularity;

• the preimages of each crossing point y ∈ S are ordered.

c1

c2

Figure 2: An alternating link projection.
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Properties of a projection of a link

c1

c2

We observe the following:

• every intersection is a true crossing (no tangencies).

• the images of two circles may intersect;

• the image of a circle may self-intersect;
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Definition. A link projection is alternating if on a traversal
of each of its components, the over-crossings and under-crossings
alternate, as on the left of Figure 3. An alternating link is a
link that has an alternating projection.

alternating projection non-alternating projection

Figure 3: Two projections of the Whitehead link.

Figure 4: The Borromean link.

Figure 5: The trefoil knot.
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Surfaces

A closed surface in 3-space separates 3-space into two parts, by a
3-dimensional analogue of the Jordan curve theorem. The
part that goes to infinity is called the outside and the other part
is called the inside.

meridian

longitude

Figure 6: An unknotted torus in R3.

Definition. Restoration of a link L from a projection onto
a surface is the result of pulling each crossing apart: a small
over-crossing segment is pulled outside the surface and a small
undercrossing segment is pushed inside the surface.
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Seifert surface for a knot or link

Theorem 2.1 (Seifert, 1934) Every oriented knot or link in
space is the boundary of a connected oriented surface. Each
component of the link is a boundary componenet of that surface.

Proof. [Sei34] or [Ad04].

Figure 7: Seifert surface for a trefoil knot linked to an unknot.

An arc that runs from crossing to crossing is called a segment
of the projection. In Figure 7, every segment is oriented. The
orientations of the segments are inherited from the orientations
of the components of the link itself.

We now need to know two things about Seifert surfaces:

1. how to draw a Seifert surface

2. how to calculate the genus of the surface
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Consider a link projection in which the segments have inherited
orientations. We observe that at the head of a segment s, the
segment on the other side of the crossing has its tail. Also, one
of the other two segments incident on that crossing has its tail
there. We call that segment next(s).

A Seifert circle is a cycle of the permutation next.

z = 3   x = 5   m = 2
χ(S) = 3 - 5 + 2  =  0    S1

z = 4   x = 6   m = 2
 χ(S) = 4 - 6 + 2  =  0    S1

Figure 8: Seifert circles for two link projections.

The Euler characteristic of the Seifert surface equals z−x, where

• z is the number of Seifert circles

• x is the number of crossings in the projection

If m is the number of components of the link, then z− x+m is
the Euler characteristic χ(S) of the closed surface of the same
genus. And the equation

χ(S) = 2− 2γ(S)

is used to calculate the genus of the surface.
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A torus knot is a knot that lies on an unknotted torus in 3-
space.

Figure 9: A torus knot.
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Proposition 2.2 For any link L in R3 with m(L) components,
there is a closed orientable surface S of genus m(L) in R3 on
which L is imbedded.

Proof. Thicken each component Cj into a solid torus, so that
Sj lies on the surface of that solid torus, and so that the solid
tori are mutually disjoint. Nest discard the interiors of the solid
tori, so that each component of the link lies on a torus. Then
connect the m(L) tori with m(L)− 1 tubes, to obtain a copy S
of the surface Sm(L) of genus m(L).

Corollary 2.3 Every link L in 3-space has an alternating pro-
jection onto some closed surface in R3.

Proof. By Proposition 2.2, there is a closed orientable surface
S in R3 such that L is imbedded on S. An imbedding is an
alternating projection with zero crossings.
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Cyclic plain-weaving

Definition. A cyclic plain-weaving is an alternating pro-
jection of a link onto a surface in R3.

Remark A cyclic weaving is like a cyclic plain weaving,
except that

• the projection need not be alternating;

• crossings on the surface S may have pre-images in the link
L with more than two points.

The thickness of a weaving is the maximum number of points
in a preimage.
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3 Graph imbeddings and rotation systems

This presentation of topological graph theory is consistent with
more detailed discussions of these issues to be found in [GrTu87].

Topological graphs may have multi-edges and self-loops.

Figure 10: A graph.

An edge ALWAYS has two edge-ends, which are small neigh-
borhoods of the limit points 0 and 1 of a parametrization of the
edge, even when there is only one endpoint.

e+ -
[0, 1]

parametrization

+
- e

Figure 11: A proper edge and a self-loop.

Each edge e induces two oriented edges, each running from
one edge-end of edge e to the other edge-end of e.
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Surfaces and imbeddings

• surface : a closed, compact 2-dimensional manifold;

• imbedding : a homeomorphism G→ S of a graph G onto
a topological subspace of the surface S;

• cellular : every connected component of S − G is homeo-
morphic to an open disk.

• rotation at a vertex v of G: a cyclic ordering of the ori-
ented edges originating at v;

• (pure) rotation system of graph G: a set of n rotations,
one for each vertex of G.

0

1 2

3

0. 1 3 2
1. 0 2 3
2. 0 3 1
3. 0 1 2

0. 1 2 3
1. 0 3 2
2. 0 1 3
3. 0 1 2

a a

b

b

0

1
2 3

Figure 12: Two inequivalent rotation systems for K4.
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A rotation system is a permutation ρ :
−→
E →

−→
E on the oriented

edges of a graph. It has one cycle for each vertex of the graph.

(
[0 1] [0 3] [0 2]

)(
[1 0] [1 2] [1 3]

)(
[2 0] [2 3] [2 1]

)(
[3 0] [3 1] [3 2]

)
Let ι :

−→
E →

−→
E be the permutation that reverses every oriented

edge. That is,
ι([u, v]) = [v, u]

The composition permutation ι ◦ ρ :
−→
E →

−→
E is often called the

dual of ρ. For instance,

[0 1]
ι︷︸︸︷−→ [1 0]

ρ︷︸︸︷−→ [1 2]

Its cycles are the fb-walks of the graph imbedding.(
[0 1] [1 2] [2 0]

)(
[0 2] [2 3] [3 0]

)(
[0 3] [3 1] [1 0]

)(
[1 3] [3 2] [2 1]

)
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Similarly,

(
[0 1] [0 2] [0 3]

)(
[1 0] [1 3] [1 2]

)(
[2 0] [2 1] [2 3]

)(
[3 0] [3 1] [3 2]

)
Has as its dual permutation(

[0 1] [1 3] [3 2] [2 0] [0 3] [3 1] [1 2] [2 3] [3 0]
)(

[0 2] [2 1] [1 0]
)

We observe that the 9-cycle and the 3-cycle are the fb-walks of
the given toroidal graph imbedding of K4.
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Two equivalent orientable imbeddings of a graph G have
the same rotation at every vertex of G.

Example 3.1 Imbeddings of the complete graph K4.

• 2 in S0 with four 3-gons, like top drawing in Fig. 12.

• 8 in S1 with 3-gon and 9-gon, like bottom drawing in Fig. 12.

• 6 in S1 with a 4-gon and an 8-gon

Thus, the genus distribution of K4 is

g0(K4) = 2 g1(K4) = 14

Example 3.2 Two more genus distributions.

g-dist = (2, 38, 24) g-dist = (0, 40, 24)

Figure 13: Two non-isomorphic graphs.
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Two basic artifacts of context

Proposition 3.3 For any graph G,∑
i≥0

gi(G) =
∏

v∈V (G)

((deg(v)− 1)!)

Theorem 3.4 (Thomassen) The minimum-genus problem is
NP-complete.

Theorem 3.5 (Mohar) For every closed surface S, there is a
linear-time algorithm to decide whether a given graph can be
imbedded in S.

The catch is that the multiplicative constant grows rapidly with
increasing genus of the surface.
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Face-tracing

The face-tracing algorithm [Ed60, GrTu87] constructs the
fb-walks. Matching the perimeter of each s-sided polygon to
each fb-walk of length s reconstructs the surface S.

A face corner is a triple (v, e, e′) comprising a vertex v and
two oriented edges e and e′, both oriented out of v, where the
v-edge-end of e′ immediately follows the v-edge-end of e′ in the
rotation at v. If neither e nor e′ is a self-loop, we say that e′ is
0-next to e at v and that e is 1-next to e′ at v. For a self-loop,
we must say which orientation is 0-next or 1-next.

Subroutine FaceTrace(t0, 〈u0, w0〉)
Input: 〈u0, w0〉 is an oriented edge, and t0 ∈ {0, 1} is its “trace type”.
Output: the sequence of oriented edges in the fb-walk containing 〈u0, w0〉.
1. trace and print 〈u0, w0〉;
2. t = t0 + type([u0, w0]) (mod 2);
3. 〈u,w〉 = the t-next to 〈w0, u0〉 at w0; \\u = w0

4. while (〈u,w〉 6= 〈u0, w0〉) or (t 6= t0) do
trace and print 〈u,w〉;
t = t+ type([u,w]) (mod 2);
〈w′, u′〉 = 〈w, u〉;
〈u,w〉 = the t-next to 〈w′, u′〉 at w′. \\u = w′

Algorithm FbWalks(ρ(G))
Input: ρ(G) is a general graph rotation system.
Output: the collection of all fb-walks in ρ(G).

while there is an untraced face corner (u, e, e′) in ρ(G) do
suppose that e′ = 〈u,w〉; call FaceTrace(0, 〈u,w〉).
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4 Rotation systems and surgery

Surgery operations on pure graph rotation systems (thus, on
graph imbeddings) have been extensively studied [Ch90, GrTu87].
They are relatively easy to understand.

Pure edge-insertion and edge-deletion surgery

Edge-Insert-0

(a) If both ends of a new edge e are inserted into corners of
the same face, then e splits that face into two faces, and
the two oriented edges corresponding to e belong to the
different fb-walks in the new imbedding.

(b) If the two ends of e are inserted into corners of two different
faces, then e merges those two faces into a single face, and
the two oriented edges corresponding to e belong to the
fb-walk of that single face in the new imbedding.

(a) (b)

Figure 14: Adding an edge to an orientable imbedding.
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The operation of edge deletion on a pure rotation system “re-
verses” edge insertion.

Edge-Delete-0

If the two oriented edges corresponding to an edge e appear in
the boundary walks of two different faces, then deleting the
edge e merges the two faces into a single face.

If the two oriented edges corresponding to an edge e belong to
the boundary walk of a single face, then deleting the edge
e splits that face into two faces.

(a) (b)

Figure 15: Edge-delete from orientable imbedding (R to L).

*** REMARK ***

The fb-walks for an imbedding of a graph on
an orientable surface represent a trivial weave,
i.e., a link whose components are completely
unlinked and individually unknotted.

We now turn our focus to non-trivial weaves.
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5 General rotation systems

A general rotation system of a graph G = (V,E) consists of
a pure rotation system of G plus a function t : E → {0, 1} that
assigns to each edge of G an edge-type.

This augmentation of graph rotation systems is sufficient to rep-
resent imbeddings on non-orientable surfaces. For this, we re-
gard type-0 edges as flat and type-1 edges as twisted.

The following figure represents band-decompositions for imbed-
dings K4 → S0 and K4 → N1.

Figure 16: Band-decompositions for K4 → S0 and K4 → N1.

Proposition 5.1 A twist that joins two fb-walks decreases the
Euler characteristic by 1.
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Proposition 5.2 The imbedding surface specified by a general
rotation system is orientable if and only if the following condi-
tion holds for every pair of vertices u and v:

The parity of the number of twisted edges is the same
along every path between u and v.

The induced weaving of a general rotation system is the pro-
jection of the boundary of its band-decomposition onto the sur-
face specified by its underlying pure rotation system.

Example 5.3 The second band-decomposition also gives us a
non-trivial weaving on S0 of a link with three components, which
are the fb-walks for the imbedding K4 → N1 projected onto S0.

Figure 17: Band-decomps for K4 → S0 and K4 → N1 again.
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6 On edge-twisting surgery

Twisting an edge in a general rotation system means changing
its type, either from 0 to 1, or from 1 to 0.

Remark When traversing a twisted edge during face-tracing,
the cyclic direction at the terminating vertex (at which one se-
lects the next oriented edge) is taken to be opposite from the
direction at the originating vertex.

Theorem 6.1 Twisting an edge e in a general rotation system
ρ(G) satisfies the following rules:

(A) Suppose that the two trace-pairs induced by e belong to the
boundaries of two different faces in the imbedding. Then
twisting e merges the two faces into a single face;

(B) Suppose that the two trace-pairs induced by e belong to the
boundary of the same face F in the imbedding.

(B1) If the two trace-pairs induced by e use the same ori-
ented edge, then twisting e splits the face F into two
faces;

(B2) If the two trace-pairs induced by e use different ori-
ented edges, then twisting e converts the face F into a
new single face.

The results of twisting an edge both of whose induced trace-pairs
belong to the boundary walk of the same face, in particular case
(B2) of Theorem 6.1, seem to have been absent from the existing
literature in topological graph theory. It takes several pages
of technical detail to close this gap.
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7 General edge-inserts and edge-deletes

One might expect that most results for pure graph rotation sys-
tems would extend naturally to general graph rotation systems.
However, there seem to be some subtle issues that are quite
different, which, to our knowledge, have not been thoroughly
studied in the literature.

Example 7.1 Figure 18(1) corresponds to a 1-face imbedding
of the bouquet B1 (one vertex with one self-loop) on the projec-
tive plane. In particular, face corners c1 and c2 in Figure 18(1)
belong to the same face. Now suppose that we insert a new
type-0 edge e2 between these two face corners, as depicted in
Figure 18(2).

t c1c2
×

e1

(1)

t
e2

×

e1

(2)

Figure 18: Inserting an edge into a general rotation system

The rules in §2 for pure graph rotation systems say that an
edge insertion (necessarily type-0 for pure rotation systems) be-
tween two corners of the same face would split that face into two
faces. However, by applying the general face-tracing algorithm
to Figure 18(2), we find out that the resulting rotation system
corresponds to a 1-face imbedding of the bouquet B2 (on the
Klein bottle)!
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Rules for edge-insertion surgery

Theorem 7.2 Suppose that we insert the ends of a type-0 edge
e into two face corners c1 and c2 in a general rotation system
ρ(G). Then the following rules hold:

(A) Suppose that corners c1 and c2 belong to two different faces.
Then inserting edge e between c1 and c2 merges the two faces
into a single face.

(B) Suppose that corners c1 and c2 belong to the same face.
Then

(B1) if c1 and c2 have the same corner-type, then inserting
edge e between c1 and c2 splits the face into two faces;

(B2) if c1 and c2 have different corner-types, then inserting
e between c1 and c2 results in a new face.
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Rules for edge-deletion surgery

Now we turn to edge-deletion on general rotation systems. Since
deleting a type-1 edge e can be implemented by first twisting e
then deleting the twisted e that is of type-0, it is sufficient to
focus on deleting a type-0 edge.

Theorem 7.3 Deleting a type-0 edge e from a general graph
rotation system ρ(G) satisfies the following rules:

(A) Suppose that the two trace-pairs induced by e belong to
the boundary walks of two different faces of the imbedding.
Then deleting edge e merges the two faces into a single face.

(B) Suppose that the two trace-pairs induced by e both belong
to the boundary walk of the same face F in the imbedding.

(B1) If the two trace-pairs induced by edge e use different
oriented edges, then deleting edge e splits the bound-
ary walk of the face F into two closed walks, each the
boundary of a new face of the resulting imbedding.

(B2) If the two trace-pairs induced by edge e = [u,w] use
the same oriented edge, then deleting edge e changes
the boundary walk of face F into the boundary walk of
a single new face.
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8 Extended graph rotation systems

Topologically, tracing a twisted edge “reverses” the local orien-
tation of the rotation system. Accordingly, retwisting an edge is
equivalent to untwisting. Here are the differences in our model
for cyclic weaving:

• We record which segment goes over and which segment
goes under at the crossing point.

• We record by how many turns an edge is twisted.

(1)
k = 0

(2)
k = 1

(3)
k = -1

(4)
k = 2

(5)
k = -2

Figure 19: (1) an untwisted edge. (2) a clockwise twisted edge. (3)
a counterclockwise twisted edge. (4) a double clockwise twisted
edge. (5) a double counterclockwise twisted edge.

An extended rotation system for a graph G is obtained from
a pure rotation system by assigning to every edge e, a number
k(e) of twists, with k(e) ∈ Z.
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9 Cyclic plain-weaving on surfaces

Theorem 9.1 Let ρ0(G) be a pure rotation system for an imbed-
ding π0 : G → S of a graph on an orientable surface. Let A be
an arbitrary subset of edges of G. If we twist all edges in A pos-
itively, or if we twist all edges in A negatively, then the resulting
extended rotation system induces a cyclic plain weaving on S.

X

XX

Figure 20: Close-up view of very small ERS-weaves.

Figure 21: Some easily implemented ERS weaves.
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Theorem 9.2 Every cyclic plain-weaving on the sphere can be
specified by an ERS.

Figure 22: Constructing the graph and the ERS for a link.

Theorem 9.3 Every CELLULAR cyclic plain-weaving on an
orientable surface can be specified by an ERS.
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