
IMPACT: IMPrecise adders for low-power Approximate
CompuTing

Vaibhav Gupta, Debabrata Mohapatra, Sang Phill Park, Anand Raghunathan and Kaushik Roy
School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA

Email: {gupta64,dmohapat,sppark,raghunathan,kaushik}@purdue.edu

Abstract—Low-power is an imperative requirement for portable mul-
timedia devices employing various signal processing algorithms and
architectures. In most multimedia applications, the final output is
interpreted by human senses, which are not perfect. This fact obviates
the need to produce exactly correct numerical outputs. Previous research
in this context exploits error-resiliency primarily through voltage over-
scaling, utilizing algorithmic and architectural techniques to mitigate the
resulting errors. In this paper, we propose logic complexity reduction
as an alternative approach to take advantage of the relaxation of
numerical accuracy. We demonstrate this concept by proposing various
imprecise or approximate Full Adder (FA) cells with reduced complexity
at the transistor level, and utilize them to design approximate multi-bit
adders. In addition to the inherent reduction in switched capacitance,
our techniques result in significantly shorter critical paths, enabling
voltage scaling. We design architectures for video and image compression
algorithms using the proposed approximate arithmetic units, and evaluate
them to demonstrate the efficacy of our approach. Post-layout simulations
indicate power savings of up to 60% and area savings of up to 37%
with an insignificant loss in output quality, when compared to existing
implementations.

Index Terms—Approximate computing, Low-power, Mirror adder.

I. INTRODUCTION

Commonly used multimedia applications have Digital Signal Pro-

cessing (DSP) blocks as their backbone. Most of these DSP blocks

implement image and video processing algorithms, where the ultimate

output is either an image or a video for human consumption. The

limited perception of human vision allows the outputs of these

algorithms to be numerically approximate rather than accurate. This

relaxation on numerical exactness provides some freedom to carry

out imprecise or approximate computation. The freedom can be taken

advantage of to come up with low-power designs at different levels

of design abstraction, viz. logic, architecture, and algorithm.

Few works which focus on low-power design through approximate

computing at the algorithm and architecture levels include Algorith-

mic Noise Tolerance (ANT) [1], [2], [3], [4], Significance Driven

Computation (SDC) [5], [6], [7] and non-uniform Voltage Over-

Scaling (VOS) [8]. All these techniques are based on the central

concept of VOS, coupled with additional circuitry for correcting or

limiting the resulting errors. In [9], a fast but “inaccurate” adder is

proposed. It is based on the idea that on an average, the length of

the longest sequence of propagate signals is approximately log n,

where n is the bitwidth of the two integers to be added. An error-

tolerant adder is proposed in [10] which operates by splitting the

input operands into accurate and inaccurate parts. However, both

these techniques do not target logic complexity reduction. A power-

efficient multiplier architecture is proposed in [11] which uses a

2 × 2 inaccurate multiplier block resulting from Karnaugh Map

simplification. This work does consider logic complexity reduction,

but only focuses on a 2× 2 multiplier, and does not consider adders

as such. Other approaches use complexity reduction at the algorithm

level to meet real-time energy constraints [12], [13]. We propose

an approach where we apply logic complexity reduction to addition

at the bit level by simplifying the Mirror Adder (MA) circuit. We

develop imprecise but simplified arithmetic units, which provide an

extra layer of power savings over conventional low-power design

techniques. This is attributed to the reduced logic complexity of the

proposed approximate arithmetic units. Note that the approximate

arithmetic units not only have reduced number of transistors, but

care is taken to ensure that the internal node capacitances are much

reduced. Complexity reduction leads to power reduction in two dif-

ferent ways. First, an inherent reduction in switched capacitance and

leakage results from having smaller hardware. Second, complexity

reduction frequently leads to shorter critical paths, facilitating voltage

reduction without any timing-induced errors. In summary, our work

significantly differs from other works (SDC, ANT and non-uniform

VOS) since we adopt a different approach for exploiting error-

resiliency. Our aim is to target low-power design using simplified and

approximate logic implementations. Since DSP blocks mainly consist

of adders and multipliers (which are in turn built using adders), we

propose several approximate adders, use them to design image and

video processing systems, and highlight the potential benefits. Our

contributions in this paper can be summarized as follows :-

• We propose logic complexity reduction as an alternative ap-

proach to approximate computing for signal (video and image)

processing applications.

• We show how to simplify the logic complexity of a conventional

MA cell by reducing the number of transistors and internal node

capacitances. Keeping this aim in mind, we propose 3 different

simplified versions of the MA ensuring minimal errors in the

Full Adder (FA) truth table.

• We utilize the simplified versions of the FA cell to propose

several imprecise or approximate multi-bit adders which can

be used as building blocks of DSP systems. To maintain a

reasonable output quality, we use approximate FA cells only

in the Least Significant Bits (LSBs). The Most Significant Bits

(MSBs) are ensured to be correct by using accurate FA cells

for them. We particularly focus on adder structures that use FA

cells as their basic building blocks. We have used approximate

Carry Save Adders (CSAs) to design 4:2 and 8:2 compressors

(section III-A). Higher order compressors (using CSA trees)

are also used to accumulate partial products in various tree

multipliers [14]. So our approach is also useful for designing

approximate tree multipliers, which are extensively used in

DSP systems. In general, our approach may be applied to any

arithmetic circuit built with FAs.

• We present designs for image and video compression algorithms

using the proposed approximate adders and evaluate the approx-

imate architectures in terms of output quality, power dissipation

and area.

• Finally, in order to have a fair comparision, we compare our

results with truncation, which is a well-known and simple

978-1-61284-660-6/11/$26.00 © 2011 IEEE 409

technique utilized in DSP systems to trade off output quality

for power dissipation and area. Our results show that truncating

the LSBs beyond a certain limit has drastic effects on the

output quality of multimedia systems. The primary benefit of

the proposed approximate adders is to maintain a reasonable

output quality, and extract power and area savings almost at par

with truncation.

The rest of the paper is organized as follows. In section II, we

propose and discuss various approximate FA cells. In section III, we

apply them to DSP systems and present the output quality, power and

area results. In section IV, we compare the proposed approximations

using a metric that considers quality, power and area. Section V

concludes the paper.

II. APPROXIMATE FULL ADDER CELLS

In this section, we discuss different methodologies for designing

approximate FA cells. Since the MA [14] is one of the widely used

economical implementations of the FA, we use it as our basis for

proposing different approximations of an FA cell.

A. Approximating the Mirror Adder

In this section, we discuss how we can come up with different

approximate versions of the MA with lesser number of transistors.

Since series connected transistors contribute to larger delay, removal

of some of them will facilitate faster charging/discharging of node

capacitances. Moreover, complexity reduction by removal of transis-

tors also aids in reducing the αC term (switched capacitance) in the

dynamic power expression Pdynamic = αCV 2
DDf , where α is the

switching activity or average number of switching transitions per unit

time and C is the load capacitance being charged/discharged. This

directly results in lower power dissipation. Another benefit is reduced

area. Now, let us discuss the conventional MA implementation

followed by the proposed approximations.
1) Conventional Mirror Adder: Figure 1 shows the transistor level

schematic of a conventional MA [14], which is a popular way of

implementing an FA. It consists of a total of 24 transistors. Note that

this implementation is not based on complementary CMOS logic,

and thus provides an opportunity to cleverly design an approximate

version with removal of selected transistors.

A

Cout’ Sum’

B B

B B

B

B

B

B

A

A

A

A
A

AA

Cin

Cin

Cin

Cin

Cin

VDD VDD
VDD

Fig. 1: Conventional MA

2) Approximation 1: In order to get an approximate MA with

lesser transistors, we start to remove transistors from the conventional

schematic one by one. In doing so, we need to ensure that any input

combination of A, B and Cin does not result in short circuits or open

circuits in the simplified schematic. We also impose another criterion

that the resulting simplification should introduce minimal errors in

the FA truth table. A judicious selection of transistors to be removed

(ensuring no open or short circuits) results in a schematic shown in

Figure 2. Clearly, this schematic has 8 less transistors compared to

the conventional MA schematic.

A close observation of the truth table of an FA shows that

Sum = Cout for 6 cases out of 8, except for the input combinations

A = 0, B = 0, Cin = 0 and A = 1, B = 1, Cin = 1. Now, in

the conventional MA, Cout is computed in the first stage. Thus an

elegant way of simplifying the MA further is to discard the Sum
circuit completely. Although one can directly set Sum = Cout

as shown in Figure 1, we introduce a buffer stage after Cout (see

Figure 3) to implement the same functionality. The reason for this

can be explained as follows. If we set Sum = Cout as it is in the

conventional MA, the total capacitance at the Sum node would be

a combination of 4 source-drain diffusion and 2 gate capacitances.

This is an appreciable increase compared to the conventional case.

Such a design would lead to a delay penalty in cases where two

or more multi-bit approximate adders are connected in a chained

fashion, which is a common scenario in DSP applications. Thus we

combine the simplified circuit for Cout in Figure 2 with the idea that

Sum = Cout for 6 cases out of 8. Figure 3 shows the simplified

MA obtained using this technique. This introduces 1 error in Cout

and 3 errors in Sum, as shown in Table I.

3) Approximation 2: Again, a careful observation of the FA truth

table shows that Cout = A for 6 cases out of 8. Similarly, Cout = B

for 6 cases out of 8. Since A and B are interchangeable, we consider

Cout = A. Thus we propose a second approximation (approximation

2) where we just use an inverter with input A to calculate Cout

and Sum is calculated similar to the simplified MA in Figure 2.

Figure 4 shows the simplified circuit obtained using this technique.

This introduces 2 errors in Cout and 3 errors in Sum, as shown in

Table I.

In both approximations 1 and 2, Cout is calculated by using an

inverter with Cout as input.

4) Approximation 3: In approximation 2, we find that there are

3 errors in Sum. We take this approximation a step further by

allowing 1 more error, i.e., 4 errors in Sum. We also aim to reduce

the dependency of Sum on Cin (to save area). This leaves us

with 2 choices, Sum = A and Sum = B. Also, we use the

approximation Cout = A, as in approximation 2. Thus we have

2 choices for approximation 3, viz. Sum = A, Cout = A and

Sum = B, Cout = A. If we observe choice 1, we find that both

Sum and Cout match with accurate outputs in only 2 out of the 8

cases. In choice 2, Sum and Cout match with accurate outputs in 4

out of the 8 cases. Therefore, to minimize errors both in Sum and

Cout, we go for choice 2 as approximation 3. Our main thrust here

is to ensure that for a particular input combination (A, B and

Cin), ensuring correctness in Sum also makes Cout correct. Now

consider the addition of two 20 bit integers a[19:0] and b[19:0] using

a Ripple Carry Adder (RCA)1. Suppose we use approximate FAs for

7 LSBs. Then Cin[7] = Cout[6]. Note that Cout[6] is approximate.

Applying this approximation to our present example, we find that

carry propagation from bit 0 to bit 6 is entirely eliminated. In addition,

the circuitry needed to calculate Cout[0] to Cout[5] is also saved. To

limit the output capacitance at Sum and Cout nodes, we implement

the approximation 3 Sum = B, Cout = A using buffers.

1We only mention the ripple carry adder for ease of illustration. The
proposed approach can be applied to any arithmetic circuit that is composed of
full adder cells, including tree structures, such as carry-save trees considered
in this paper.

410

TABLE I: Truth table for conventional full adder and approximations 1, 2 and 3
Inputs Accurate outputs Approximate outputs

A B Cin Sum Cout Sum1 Cout1 Sum2 Cout2 Sum3 Cout3

0 0 0 0 0 1 ✕ 0 ✓ 0 ✓ 0 ✓ 0 ✓ 0 ✓

0 0 1 1 0 1 ✓ 0 ✓ 1 ✓ 0 ✓ 0 ✕ 0 ✓

0 1 0 1 0 0 ✕ 1 ✕ 0 ✕ 0 ✓ 1 ✓ 0 ✓

0 1 1 0 1 0 ✓ 1 ✓ 1 ✕ 0 ✕ 1 ✕ 0 ✕

1 0 0 1 0 1 ✓ 0 ✓ 0 ✕ 1 ✕ 0 ✕ 1 ✕

1 0 1 0 1 0 ✓ 1 ✓ 0 ✓ 1 ✓ 0 ✓ 1 ✓

1 1 0 0 1 0 ✓ 1 ✓ 0 ✓ 1 ✓ 1 ✕ 1 ✓

1 1 1 1 1 0 ✕ 1 ✓ 1 ✓ 1 ✓ 1 ✓ 1 ✓

Layouts of conventional MA and different approximations in IBM

90nm technology are shown in Figures 5a, 5b, 5c and 5d. Table II

compares their areas.

TABLE II: Layout area of approximate MA cells
MA cell Area (µm2)

Conventional 40.66
Approximation 1 22.56
Approximation 2 23.91
Approximation 3 13.54

B. Discussion on proposed approximations

Now we discuss how the proposed approximations also help in

reducing the overall propagation delay in a typical design involving

several adder levels. The input capacitance of Cin in a conventional

MA consists of 6 gate capacitances (see Figure 1). Approximation

2 has only 3 such gate capacitances, which further reduces to only

2 gate capacitances in approximation 1. Now consider a section of

a multi-level adder tree as shown in Figure 6. The Sum bits of

outputs e and f become input bits A and B for output g. A reduction

in input capacitances at nodes A and B of adder level m results

in a faster computation of the Sum bits of adder level m − 1.

The input capacitance at node A consists of 8 gate capacitances

in the conventional case. This is reduced to 4 gate capacitances

in approximation 2, and only 2 gate capacitances in approximation

1. Similarly, the corresponding values for node B are 8, 3 and 2

gate capacitances for the conventional case, approximations 1 and

2 respectively. Thus a reduction in load capacitances is the crux of

the proposed approximations, offering an appreciable reduction in

propagation delay and providing an opportunity for operating at a

lower supply voltage than the conventional case.
Next, we apply these approximations to two DSP systems and

present the analyses and results in the following sections.

III. APPLICATION TO DSP SYSTEMS

In the previous section the impact of using approximate FA

cells on the truth table of an FA was discussed. However, since

most DSP algorithms used in multimedia systems have inherent

error-resiliency, these occasional errors might not manifest as an

VDD VDD

VDD
B B

B

A
Cin

A

A B

Cin

Cin

Cin

A

B

Sum’
Cout’

Fig. 2: Simplified MA

Cout’

B B

B

A

A

Cin

VDD

VDD

Sum

Fig. 3: MA approximation 1

VDD

VDD
B

Cin

Cin

Cin

A

B

Sum’
Cout’

A

A

Fig. 4: MA approximation 2

(a) Conventional (b) Approximation 1 (c) Approximation 2 (d) Approximation 3

Fig. 5: Layouts of conventional and approximate MA cells

411

a b c d

e f

g
adder level m

adder
level (m-1)

Fig. 6: Adder tree section

appreciable reduction in the final output quality. Multimedia DSP

algorithms mostly consist of additions and multiplications, which

use adders as basic building blocks. We focus on two algorithms,

viz. image and video compression, and present the results of using

our approximate FA cells in these algorithms.

A. Image Compression

The Discrete Cosine Transform (DCT) and Inverse Discrete Co-

sine Transform (IDCT) are integral components of a JPEG image

compression system [15]. One-dimensional integer DCT y(k) for an

8-point sequence x(i) is given by [16]

y(k) =
7

X

i=0

a(k, i)x(i), k = 0, 1, . . . , 7 (1)

Here a(k, i) are cosine functions converted into equivalent integers

[6]. The integer outputs y(k) can then be right-shifted to get the actual

DCT outputs. A similar expression can be found for one-dimensional

integer IDCT [7]. We alter the integer coefficients a(k, i), k =
1, . . . , 7 so that the multiplication a(k, i)x(i) is converted to 2 left-

shifts and an addition. Since a(0, i) corresponds to the DC coefficient,

which is most important, we leave it unaltered. The multiplication

a(0, i)x(i) then corresponds to an addition of 4 terms. This is done

using a carry-save tree using 4:2 compressors followed by a merge

adder. Also, each integer DCT and IDCT output is the sum of

8 terms. Thus these outputs are calculated using a carry-save tree

using 8:2 compressors followed by a merge adder. Thus the whole

DCT-IDCT system now consists of RCAs and CSA trees. In our

design, all adders are replaced by approximate adders, which use

the approximate FA cells proposed previously. In one-dimensional

integer DCT, the maximum value of the DC coefficient is given by

45× 8× 255 = 91800 [6]. This is represented in two’s complement

using 18 bits. Therefore, we use a bit-precision of 20 bits (a multiple

of 4, for convenience) in all our computations.
According to our experiments, using approximate FA cells beyond

the 9th LSB results in an appreciable quality loss, so we consider 3

cases, where we use approximate FA cells for 7, 8 and 9 LSBs. FA

cells corresponding to other bits in each case are accurate. We also

show corresponding results for truncation. The design using accurate

adders everywhere in DCT and IDCT is considered to be the base

case.
1) Output quality: The output Peak Signal to Noise Ratio (PSNR)

for the base case is 31.16 dB. Figure 7 shows the output images for

the base case, truncation, and approximation 3. Clearly, since the error

introduced by truncation has an accumulative nature, the output image

has severe blockiness. Hence using truncation may not yield fruitful

results. Figure 8 shows the output quality for truncation and different

approximations when 7, 8 and 9 LSBs are approximated. Clearly,

using approximate FAs in the LSBs can make up for the lost quality

(due to truncation) to a large extent, and also provide substantial

power savings. Power consumption for different approximations is

discussed in the next section.

Fig. 7: Output quality when 8 LSBs are approximated

Fig. 8: Output quality for different techniques

2) Power consumption: As mentioned in Section II-B, both DCT

and IDCT blocks can be operated at a lower supply voltage (compared

to the base case) when using approximate adders. DCT operates at

1.28 V and IDCT operates at 1.13 V for the accurate case. Table III

shows the operating supply voltages for different approximations

and truncation in IBM 90nm technology. These voltages are chosen

such that the errors are due to functional/truth table approximation

only, and not due to VOS. The power consumption for DCT and

IDCT blocks was determined using nanosim run with 12288 vectors

from the standard image Lena in IBM 90nm technology. Spice

netlists for conventional as well as approximate FA cells were

extracted from the respective layouts (Figures 5a - 5d) and used

in the simulation. Figure 9 shows the total power savings for DCT

and IDCT blocks over the base case for different approximations

and truncation. Approximation 3 provides maximum power savings

among all approximations. The use of approximate adders also results

in area savings, which is discussed in the next section.

TABLE III: Operating voltages for different techniques

Technique
VDD (V) for the 3 cases

7 LSBs 8 LSBs 9 LSBs
DCT IDCT DCT IDCT DCT IDCT

Truncation 1.13 1.03 1.10 1.03 1.1 1
Approx. 1 1.18 1.05 1.1 1.03 1.1 1.03
Approx. 2 1.15 1.1 1.13 1.1 1.1 1.1
Approx. 3 1.14 1.02 1.11 1.01 1.1 1

3) Area savings: As shown in Table II, the layout area of

approximate FA cells is lesser compared to the conventional case.

Furthermore, approximation 3 also helps in avoiding calculation

of Cout for the LSBs. Thus the area of the whole approximate

DCT-IDCT system is less compared to the base (or accurate) case.

Figure 10 shows the area savings for different approximations over

the base case. Approximation 3 has the maximum area savings

irrespective of the number of LSBs approximated.

412

Fig. 9: Power savings for DCT+IDCT over the base case

Truncating 4 LSBs provides a PSNR of 31.08 dB, 24.22% power

savings, and 20% area savings. On the other hand, using approxi-

mation 3 for 8 LSBs provides a PSNR of 28.9 dB, 53.29% power

savings, and 32.67% area savings. This beats truncation in both power

and area, with very minimal loss in quality. In the next section,

we present the results of using our approximate adders in video

compression.

Fig. 10: Area savings for DCT+IDCT over the base case

B. Video Compression

Another popular multimedia application to which we have applied

imprecise adders is video compression. Figure 11 shows the block

diagram of MPEG encoder architecture [17].

Here we focus on Motion Estimation (ME) [4] hardware which

accounts for nearly 70% of the total power consumption [17].

In addition to the motion estimation block we have implemented

few other adders/subtractors using approximate adders which are

shown in white (Motion Estimation, subtractor for DCT error, and

IDCT reconstruction adder) in Figure 11. The basic building block

for any ME algorithm is the hardware that implements Sum of

Absolute Difference (SAD) [17], which consists of an 8-bit absolute

difference block followed by a 16-bit accumulator. We have used

various approximate adders discussed earlier to design a low-power

approximate SAD and compared its quality and power to the nominal

design as well as truncation.

1) Output quality: Figure 12 shows the average frame PSNR

for 50 frames of the AKIYO benchmark CIF [17] video sequence.

We consider the frame quality for truncation as well as the three

approximations applied to 1, 2, 3 and 4 LSBs of the adders in SAD

Motion�
Estimation�

Quantization�

Motion�
Compensation�

Inverse�
Quantization�

Inverse�
DCT�

Entropy�
Encoding�

Frame�
Memory�

DCT�-�Raw Frame�

Encoded�
Frame�

+�

Fig. 11: MPEG encoder architecture

and MPEG hardware shown in white (Motion Estimation, subtractor

for DCT error, and IDCT reconstruction adder) in Figure 11. With the

increase in number of LSBs implemented as imprecise adders, our

proposed approximations scale more gracefully in terms of quality

when compared to truncation.

2) Power consumption: Figure 13 shows the power savings for

approximate adders. Again, approximation 3 provides maximum

power savings (≈ 42% when 4 LSBs are approximated) among all

approximations. As mentioned earlier, truncation results in better

power savings compared to all approximations. However, it also

results in significant degradation in output frame quality.

IV. OVERALL ANALYSIS OF DIFFERENT APPROXIMATIONS

We have compared the different approximations proposed for

image compression on the basis of PSNR, power dissipation, and

area. In order to have a unified comparison, we define a metric

named QUAP as QUAP = (QUality X Area savings (%) X Power

savings (%)). In this formula, quality is computed as PSNR2. Here

we place a greater emphasis on output quality, since it is of prime

importance to the end user. Figure 14 shows the metric calculated for

different approximations. As expected, approximation 3 outperforms

all other approximations by a huge margin. Approximation 2 is the

next best approximation. Table IV shows the Quality Loss (QL) and

Power Savings (PS) when approximation 3 is used for some standard

benchmarks, out of which 3 are from [18]. The corresponding

area savings for 7, 8 and 9 LSBs are 28.5%, 32.67% and 36.85%

respectively.

Fig. 12: Output quality for AKIYO sequence

413

Fig. 13: Power savings over accurate adders for video compression

In particular, approximation 3 can provide power and area

savings with almost no loss in output quality when 7 or less than

7 LSBs are approximated.

Fig. 14: Comparision of different approximations

TABLE IV: Approximation 3 tested across standard benchmarks

Image
7 LSBs 8 LSBs 9 LSBs

QL(dB) PS(%) QL(dB) PS(%) QL(dB) PS(%)

lena 0.69 44.57 2.26 53.29 5.7 59.57

mandril 0.17 40.48 0.58 49.67 2.05 54.35

kodim09 0.31 43.24 1.14 52.07 3.65 57.07

kodim19 0.42 43.2 1.34 52.54 4.04 56.94

kodim23 0.46 43.2 1.35 52.87 4.39 58.39

V. CONCLUSION

In this paper, we have proposed several imprecise or approx-

imate FA cells that can be effectively utilized to build multi-bit

arithmetic units and trade off power, area and quality for error-

resilient DSP systems. Our approach aims to simplify the complexity

of a conventional mirror adder cell by reducing the number of

transistors and also the load capacitances. When the errors introduced

by these approximations are reflected at a high level in a typical

DSP algorithm, the impact on output quality is almost negligible.

Thus our approach differs from previous approaches where errors

are introduced due to VOS [1], [2], [3], [4], [5], [6], [7], [8]. A

decrease in the effective switched capacitance results in a lower power

dissipation. Moreover, the proposed approximate FA cells also allow

the system to operate at a lower supply voltage than the conventional

case. This further contributes to a quadratic reduction in power

dissipation. An added benefit due to lower number of transistors is

a reduction in total area. While techniques like SDC and ANT have

an area overhead, on the contrary, our technique provides substantial

area savings too. We have demonstrated the utility of the proposed

approximate FA cells in two DSP systems, viz. image and video

compression. We believe that they can be used on the top of already

existing low-power techniques like SDC and ANT to extract multi-

fold benefits with a very minimal loss in output quality.

REFERENCES

[1] R. Hegde and N. Shanbhag, “Energy-efficient signal processing via algo-
rithmic noise-tolerance,” in Proc. IEEE/ACM International Symposium
on Low Power Electronics and Design, 1999, pp. 30 – 35.

[2] R. Hegde and N. R. Shanbhag, “Soft digital signal processing,” IEEE
Trans. VLSI Syst., vol. 9, no. 6, pp. 813–823, 2001.

[3] B. Shim, S. Sridhara, and N. Shanbhag, “Reliable low-power digital
signal processing via reduced precision redundancy,” IEEE Trans. VLSI
Syst., vol. 12, no. 5, pp. 497 – 510, 2004.

[4] G. Varatkar and N. Shanbhag, “Energy-efficient motion estimation using
error-tolerance,” in Proc. IEEE/ACM International Symposium on Low
Power Electronics and Design, 2006, pp. 113 – 118.

[5] D. Mohapatra, G. Karakonstantis, and K. Roy, “Significance driven
computation: A voltage-scalable, variation-aware, quality-tuning motion
estimator,” in Proc. IEEE/ACM International Symposium on Low Power
Electronics and Design, 2009, pp. 195–200.

[6] N. Banerjee, G. Karakonstantis, and K. Roy, “Process variation tolerant
low power dct architecture,” in Proc. Design, Automation, and Test in
Europe, 2007, pp. 1 – 6.

[7] G. Karakonstantis, D. Mohapatra, and K. Roy, “System level dsp syn-
thesis using voltage overscaling, unequal error protection and adaptive
quality tuning,” in Proc. IEEE Workshop on Signal Processing Systems,
2009, pp. 133 – 138.

[8] L. N. Chakrapani, K. K. Muntimadugu, L. Avinash, J. George, and K. V.
Palem, “Highly energy and performance efficient embedded computing
through approximately correct arithmetic: a mathematical foundation and
preliminary experimental validation,” in CASES, 2008, pp. 187–196.

[9] A. K. Verma, P. Brisk, and P. Ienne, “Variable latency speculative
addition: A new paradigm for arithmetic circuit design,” in Proc. Design,
Automation, and Test in Europe, 2008, pp. 1250–1255.

[10] N. Zhu, W. L. Goh, and K. S. Yeo, “An enhanced low-power high-speed
adder for error-tolerant application,” in Proc. International Symposium
on Integrated Circuits, December 2009, pp. 69 –72.

[11] P. Kulkarni, P. Gupta, and M. Ercegovac, “Trading accuracy for power
with an underdesigned multiplier architecture,” in Proc. 24th Interna-
tional Conference on VLSI Design, January 2011, pp. 346 –351.

[12] Y. V. Ivanov and C. J. Bleakley, “Real-time h.264 video encoding in
software with fast mode decision and dynamic complexity control,”
ACM Trans. Multimedia Comput. Commun. Appl., vol. 6, pp. 5:1–5:21,
February 2010.

[13] M. Shafique, L. Bauer, and J. Henkel, “enbudget: A run-time adaptive
predictive energy-budgeting scheme for energy-aware motion estimation
in h.264/mpeg-4 avc video encoder,” in Proc. Design, Automation, and
Test in Europe, March 2010, pp. 1725 –1730.

[14] J. M. Rabaey, Digital Integrated Circuits: A Design Perspective. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 1996.

[15] G. Wallace, “The jpeg still picture compression standard,” IEEE Trans.
Consumer Electronics, vol. 38, no. 1, pp. xviii –xxxiv, 1992.

[16] K. K. Parhi, VLSI Digital Signal Processing Systems: Design and
Implementation. John Wiley & Sons, 1999.

[17] P. M. Kuhn and K. P. M., Algorithms, Complexity Analysis and VLSI
Architectures for MPEG-4 Motion Estimation, 1st ed. Norwell, MA,
USA: Kluwer Academic Publishers, 1999.

[18] http://r0k.us/graphics/kodak/.

414

