
Asynchronous DesignV
Part 1: Overview and
Recent Advances
Steven M. Nowick

Columbia University
Montek Singh

University of North Carolina at Chapel Hill

h THERE HAS BEEN A continuous growth of interest

in asynchronous design over the last two decades,

as engineers grapple with a host of challenging

trends in the current late-Moore era. As highlighted

in the International Technology Roadmap for Semi-

conductors (ITRS), these include dealing with the

impact of increased variability, power and thermal

bottlenecks, high fault rates (including due to soft

errors), aging, and scalability issues, as individual

chips head to the multibillion-transistor range and

many-core architectures are targeted.

While the synchronous, i.e., centralized clock,

paradigmhasprevailedin industry for severaldecades,

asynchronous designVor the use of a hybrid mix

of asynchronous and synchronous componentsV

provides the potential for ‘‘object-oriented’’distributed

hardware systems, which naturally support modular

andextensible composition,

on-demand operation with-

out extensive instrumented

power management, and

variability-tolerant design.

As highlighted by the ITRS

report, it is therefore increas-

ingly viewed as a critical

component for addressing

the above challenges.

This article aims to pro-

vide both a short historical and technical overview

of asynchronous design, and also a snapshot of the

state of the art, with highlights of some recent

exciting technical advances and commercial in-

roads. It also covers some of the remaining

challenges, as well as opportunities, of the field.

Asynchronous design is not new: some of the

earliest processors used clockless techniques. Over-

all, its history can be divided into roughly four eras.

The early years, from the 1950s to the early 1970s,

included the development of classical theory

(Huffman [1], Unger [1], McCluskey, Muller [2]),

as well as use of asynchronous design in a number

of leading commercial processors (Iliac, Iliac II,

Atlas, MU-5) and graphics systems (LDS-1). The

middle years, from the mid 1970s to early 1980s,

were largely an era of retrenchment, with reduced

activity, corresponding to the advent of the synchro-

nous VLSI era. The mid 1980’s to late 1990’s

represented a revival or ‘‘coming-of-age’’ era, with

the beginning of modern methodologies for asyn-

chronous controller and pipeline design, initial

computer-aided design (CAD) tools and optimiza-

tion techniques, the first academic microprocessors

Editor’s notes:
An asynchronous design paradigm is capable of addressing the impact of
increased process variability, power and thermal bottlenecks, high fault
rates, aging, and scalability issues prevalent in emerging densely packed
integrated circuits. The first part of the two-part article on asynchronous
design presents a chronicle of past and recent commercial advances, as
well as technical foundations, and highlights the enabling role of asynchro-
nous design in two application areas: GALS systems and networks-on-chip.

VPartha Pratim Pande, Washington State University

2168-2356/15 B 2015 IEEEMay/June 2015 Copublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTC 5

Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/MDAT.2015.2413759

Date of publication: 16 March 2015; date of current version:

04 June 2015.

(Caltech, University of Manchester, Tokyo Institute of

Technology), and initial commercial uptake for use

in low-power consumer products (Philips Semicon-

ductors) and high-performance interconnection

networks (Myricom).

The modern era, from the early 2000s to present,

includes a surge of activity, with modernization of

design approaches, CAD tool development and

systematic optimization techniques, migration into

on-chip interconnection networks, several large-scale

demonstrations of cost benefits, industrial uptake at

leading companies (IBM, Intel) aswell as startups, and

application to emerging technologies (sub-/near-

threshold circuits, sensor networks, energy harvesting,

cellular automata). The approaches in themodern era

bear little resemblance to some of the simple

asynchronous examples found in older textbooks.

This article is divided into two parts. Part 1 begins

with a chronicle of past and recent commercial

advances, and highlights the enabling role of

asynchronous design in several emerging applica-

tion areas. Two promising application domains are

covered in more detailVGALS systems and networks-

on-chipVgiven their importance in facilitating the

integration of large-scale heterogeneous systems-on-

chip. Finally, several foundational techniques are

introduced: handshaking protocols and data encod-

ing, pipelining, and synchronization and arbitration.

Part 2 focuses on methodologies for the design of

asynchronous systems, including logic- and high-

level synthesis; tool flows for design, analysis,

verification and test; as well as examples of

asynchronous processors and architectures.

Applications
Asynchronous design has successfully migrated

into commercial products from leading companies

in recent years. In addition, there have been a

number of industry experiments using asynchro-

nous design that were quite successful, even though

products did not appear on the market. There are

also several exciting emerging application areas

where asynchronous design is expected to play a

key enabling role.

Commercialization
There have been several promising examples of

commercialization of asynchronous designs over

the last decade or two, with significant cost benefits

demonstrated.

Philips Semiconductors: low-power embedded
controllers. In the late 1990s through early 2000s,

Philips Semiconductors (now NXP) achieved much

commercial success with its asynchronous 80C51

microcontroller [3]. The chip was initially aimed for

use in pager chipsets, and the motivation was to

lower electromagnetic interference (EMI) noise

emissions so that the microcontroller could operate

harmoniously with the radio-frequency (RF) data

link, without the use of shielding. As a result,

encoding and decoding of RF data could now be

performed in software instead of requiring a custom

fixed-function circuit, allowing easier upgrades to

functionality, which was not possible with their

synchronous version. It also demonstrated a 4�
power reduction over a comparable synchronous

design in the same technology. The microcontroller

was later used in smart cards for public transport,

where the wide range of operating voltages allowed

the cards to be battery-free and contactless, powered

merely by the brief burst of charge inducedwhen the

user’s handwaves it through the magnetic field of the

card reader. An enhanced version of the asynchro-

nous microcontroller (SmartMX) is now used in

more than 75 countries, including the European

Union and more recently the United States, for

biometric passports and IDs. At last count, the

number of copies sold has exceeded 700 million.

Intel/Fulcrum Microsystems: Ethernet switch chips.
In 2011, Intel acquired Fulcrum Microsystems, an

asynchronous startup producing high-speed net-

working chips, in a move industry analysts regarded

as a bid to compete with Cisco Systems. Intel’s

current FM5000/FM6000 family of switch chips,

which supports industry-leading 40 gigabit Ethernet,

includes a fully-asynchronous high-speed crossbar

switch that provides high bandwidth, low latency,

support for flexible link topologies, and high energy

efficiency. The crossbar bandwidth of over 1 terabit

per second (in a 130 nm process) is achieved

through fine-grain asynchronous pipelining, at the

granularity of individual gates, unencumbered by a

rigid clock period [4]. When operated at below

peak throughput, these chips are highly energy-

efficient, since the asynchronous logic provides

the benefit of automatic power-down of inactive

circuitry without additional instrumentation. This

combination of features is considered unique in

the marketplace.

IEEE Design & Test6

Asynchronous DesignVPart 1: Overview and Recent Advances

Achronix: high-performance FPGA’s. Another ex-

ample of asynchronous commercialization is the

Speedster 22i family of FPGAs by Achronix Semi-

conductor [5]. Manufactured in 22 nm, these chips

can operate at 1.5 GHz, and are currently claimed as

the world’s fastest FPGA’s, yet they incur a fraction of

the design cost and operating energy cost of leading

synchronous designs. Their key to achieving fast

operation is the use of asynchronous fine-grain bit-

level pipelines, thereby relaxing the constraints of

global synchronization. This asynchronous internal

implementation is transparent to the end user: the

applications mapped can be synchronous, just as on

any typical FPGA.

IBM: TrueNorth neuromorphic computer. There has

been much excitement recently about neuro-

morphic computing, which seeks to mimic the

functioning of the human brain by using massively-

parallel computer systems. In a departure from the

traditional von Neumann architecture, these sys-

tems employ a highly-distributed memory that is

tightly integrated with a large number of parallel

computational elements that model neurons. Due to

the spatially-distributed nature of computation and

communication, along with wide timing unpredict-

ability of data events, neuromorphic computing fits

well with the asynchronous paradigm. One interest-

ing example is TrueNorth [6], released in August

2014, which is the largest chip ever developed at

IBM, with 5.4 billion transistors. It integrates 4096

neurosynaptic cores on a single chip, modelling

1 million neurons and 256 million synapses. This

scale of integration poses a formidable physical

design challenge, which was successfully met using

fully-asynchronous processing elements and inter-

connection network. The event-driven asynchronous

operation facilitates extremely low powerV70 mW

for real-time operation over the entire chipVwhich

would be extremely difficult to obtain with current

synchronous techniques. Other neuromorphic

computersVUniversity of Manchester’s SpiNNaker

machine (Furber group) and Stanford University’s

Neurogrid (Boahen group)Valso use fully-

asynchronous communication networks.

Other commercial designs. Several other industrial
applications have explored asynchronous benefits.

In the early 1990s, two commercial processors from

HaL Computer Systems used a self-timed floating-

point divider [7], which was reported as 2–3.5 times

faster than the leading commercial synchronous

dividers. At Sun Microsystems, now Oracle, high-

speed asynchronous pipelines were used commer-

cially in UltraSPARC IIIi computers for smoothing

out timing discrepancies in the interface to ultra-

fast memories. Theseus Logic has used a NULL

convention logic (NCL) methodology to develop

chips that are robust to extreme variations in

manufacturing and operating conditions [8]. Octa-

sic Inc. has recently developed a clockless DSP

technology that takes advantage of the highly-

variable data-dependent execution times of different

arithmetic operations to achieve a 3� throughput

increase over comparable synchronous implemen-

tations. Finally, Tiempo IC has developed low-power

robust microprocessors, and also has exploited

another intrinsic property of asynchronous circuitsV

the lack of a coherent power or electromagnetic

emission signatureVto develop chips with secure

cryptographic functionality that have increased resil-

ience to side-channel attacks.

Industry experiments
There have also been several industry experi-

ments with asynchronous design that, though quite

successful, did not appear in commercial products.

Intel RAPPID. In this experimental project at Intel

in the mid-1990’s, an asynchronous implementation

of the IA32 instruction-length decoder was under-

taken because of severe performance bottlenecks

that could not be overcome in their commercial

version using synchronous techniques [9]. The

project focused on making the decoding of the

length of the most common CISC instructions fast by

exploiting concurrency at sub-clock-period granu-

larity, thereby significantly outperforming the exist-

ing synchronous Intel implementation: three times

higher throughput, comparable area, half the

latency, and half the power.

IBM FIR filter. At IBM Research, a project was

undertaken jointly with Columbia University to

develop a mixed synchronous-asynchronous imple-

mentation of a finite impulse response (FIR) filter for

use in the read channels of modern disk drives [10].

The goal was to reduce the filter’s latency over its

wide range of operating frequencies. In a synchro-

nous implementation that is deeply pipelined for

May/June 2015 7

speed, the latency becomes poorer when the data

rate, and hence the clock recovered from it, slows

down. The hybrid synchronous/asynchronous imple-

mentation replaced the core of the filter with an

asynchronous pipelined unit featuring a fixed latency,

while the remaining circuitry was kept synchronous.

The resulting chip exhibited a 50% reduction in worst-

case latency, along with a 15% throughput im-

provement, over IBM’s leading commercial clocked

implementation in the same technology.

Emerging application areas
Beyond more classical design targets, a number of

novel application areas have recently emerged where

asynchronous design is poised to make an impact.

Large-scale heterogenous system integration. In
multi- and many-core processors and systems-on-

chip (SoC’s), some level of asynchrony is inevitable

in the integration of heterogeneous components.

Typically, there are several distinct timing domains,

which are glued together using an asynchronous

communication fabric. There has been much recent

work on asynchronous and mixed synchronous-

asynchronous systems (see ‘‘GALS Systems’’ and

‘‘Networks-on-Chip’’ sidebars).

Ultra-low-energy systems and energy harvesting.
Asynchronous design is also playing a crucial role in

the design of systems that operate in regimes where

energy availability is extremely limited. In one ap-

plication, Liu and Rabaey demonstrated the benefits

of asynchrony for sub-threshold operation, with cir-

cuits consuming 32% lower energy than a sub-

threshold synchronous counterpart [11]. In another

application, a collaboration with Oticon Inc., a lead-

ing hearing-aid manufacturer, Nielsen and Sparsø

proposed an IFIR filter that achieves a 5� power

savings over a commercial synchronous counterpart

by dynamically adapting the numerical range of the

arithmetic circuitry to each individual sample, since

most audio samples are numerically small [12].

Such fine-grain adaptation, in which the datapath

latency can vary subtly for each input sample, is not

possible in a fixed-rate synchronous design. In a re-

cent in-depth case study by Chang et al., focusing on

ultra-low-energy 8051 microcontroller cores with

voltage scaling, it was shown that under extreme pro-

cess, voltage, and temperature (PVT) variations, a

synchronous core requires its delay margins to be

increased by a factor of 12�, while a comparable

asynchronous core can operate at actual speed [13].

Finally, Christmann et al. have designed an energy

harvesting approach to implement an autonomous

sensing application, with a reported 40% power-

efficiency gain over synchronous approaches [14].

The use of asynchronous logic provided greater

energy efficiency not only due to its event-driven

nature, but also by allowing graceful adaptivity to the

highly-variable power availability.

Continuous-time digital signal processors (CT-
DSP’s). Another intriguing direction is the develop-

ment of continuous-time digital signal processors,

where input samples are generated at irregular rates

bya level-crossing analog-to-digital converter, depend-

ing on the actual rate of change of the input’s wave-

form. An early specialized approach, using finely

discretized sampling, demonstrated a 10� power re-

duction in a speech processing application [15]. The

first general-purpose continuous-time DSP was re-

cently proposed by Vezyrtzis et al. [16]; unlike syn-

chronous DSPs, it maintains its frequency response

intact over varying sample rates and can support

multiple input formats without any internal change,

eliminates all aliasing, and demonstrates a signal-to-

error ratio for certain inputs which exceeds that of

clocked systems. The fine-grain asynchronous pro-

cessing of irregular sampling is fundamental to the

operation of these systems, andwould not be possible

to support by conventional synchronous techniques.

Handling extreme environments. Asynchronous
approaches have also been explored to handle ex-

treme environments, such as for space missions,

where temperatures can vary widely. For example,

an asynchronous 8-bit data transfer system has been

designed that is fully operational over a 400 �C

temperature range, from �175 �C to þ225 �C, using
high-temperature SOI technology [17]. The imple-

mentation also shows good resilience to single-event

transients (SET’s).

Alternative computing paradigms. Finally, there is

increasing interest in asynchronous circuits as the

organizing backbone of systems based on emerging

computing technologies, such as cellular nano-arrays

[18] and nanomagnetics [19], where highly-robust

asynchronous approaches are crucial to mitigating

timing irregularities, both layout-induced and those

IEEE Design & Test8

Asynchronous DesignVPart 1: Overview and Recent Advances

resulting from the vagaries of quantum behavior.

Asynchronous approaches were also shown to be a

good match for flexible electronics, in the Seiko/

Epson ACT11 microprocessor [20], where the phys-

ical bending and manipulation of the material can

introduce unpredictable and large delay variations.

Summary
While the above applications are in a wide

variety of areas, they exhibit a few commonly-recur-

ring themes, representing beneficial opportunities

for asynchrony:

1) Extreme fine-grain pipelining: the ability to

implement and exploit extremely fine-grainV

even gate- and bit-levelVpipelines, uncon-

strained by the need to distribute a high-speed

fixed-rate clock [Intel/Fulcrum, Achronix, HaL,

Sun Microsystems];

2) Data-dependent completion times: to support and

micro-architect systems which can exploit subtle

and fine-grain differences in data-dependent

completion time, i.e., at a subcycle granularity

[Intel RAPPID, Oticon IFIR, Ocstasic];

3) Avoiding challenges due to the rigidity of global

timing: supporting new computation paradigms

[CT-DSPs, cellular nano-arrays, nanomagnetics,

flexible electronics], extreme micro-parallelism

[Intel RAPPID], dynamic computational adaptiv-

ity [IBM FIR], and ease of large-scale system integ-

ration [GALS, NoCs, neuromorphic computing];

4) Robustness to voltage, temperature and process

variation: allowing flexible accommodation of dy-

namic timing variations [energy harvesting, sub-

threshold computing, space applications]; and

5) On-demand, i.e. event-driven, operation: highly

energy-proportional computing, without the

need for extensive instrumentation of clock-gating

at multiple design levels [nearly all applications].

While the above themes capture promising oppor-

tunities, and the current industrial uptake indicates

increasing commercial viability and interest, there

remain open issues and challenges that asynchronous

designmust overcome to gainwider industry adoption.

A brief discussion appears in the conclusion to Part 2.

Foundations
Asynchronous systems are typically organized as

a set of components which communicate and

synchronize using handshaking channels. These

channels are defined by two key parameters: com-

munication protocol and data encoding. Building on

these fundamentals, complex asynchronous systems

can be modularly constructed. In particular, we re-

view how these techniques can be used to construct

asynchronous pipelines, which are building blocks

for many high-performance systems. We then address

two basic issues in assembling asynchronous compo-

nents in larger systems: synchronization, which is

required when interfacing asynchronous and syn-

chronous domains; and arbitration, which is needed

to allow the safe competition of multiple asynchro-

nous components for a shared resource.

Classes of asynchronous circuits
Asynchronous circuits fall into several distinct

classes, depending on the degree of timing robustness

assumed in their operation. This spectrum typically

defines a robustness-performance space, where the

more robust circuits tend to have lower performance

(but not always!). Delay-insensitive circuits operate

correctly regardless of gate and wire delays. Quasi-

delay insensitive (QDI) circuits [4], [5], [21] operate

correctly assuming arbitrary gate delays, but all wires

at each fanout point must have roughly equal delays,

i.e., an isochronic fork assumption. Speed-independent

(SI) circuits [2] (an earlier term) assume arbitrary gate

delays, but all wire delays are assumed to be zero.

Other asynchronous circuits require additional timing

constraints, including hold time constraints (i.e.,

‘‘fundamental mode’’ [1]) on controllers, one-sided

‘‘bundled data’’ [3], [9], [22]–[24] timing constraints

on datapaths (see below), as well two-sided con-

straints (i.e. both short- and long-path) [25].

Protocols and data encoding
The basic structure of an asynchronous commu-

nication channel, between a sender and receiver, is

shown in Figure 1. Ignoring data transmission for now,

the channel is typically implemented by two wires:

req and ack.

Two common handshaking protocols are used to

define a single communication transaction, as

illustrated in Figure 2: 1) a four-phase protocol

(return-to-zero [RZ]), and 2) a two-phase protocol

(non-return-to-zero [NRZ], also known as transition-

signalling). In a four-phase protocol, req and ack

signals are initially at zero. The sender initiates

a transaction by asserting req, and the receiver

May/June 2015 9

An alternative to constructing fully-asynchronous systems
is a hybrid approach, integrating synchronous components
(i.e. cores, memories, accelerators, I/O units, etc.) using an
asynchronous communication network, which together form a
globally-asynchronous locally-synchronous (GALS) system.1-3
For some applications, this approach provides the best of both
worlds: allowing the design reuse of synchronous intellectual
property (IP) blocks, while combining them with fl exible asyn-
chronous interconnect as a global integrative medium. The
elimination of fi xed-rate global clocking on the communication
network can provide a highly-scalable, low-power and robust
mechanism for assembling complex systems.

A GALS approach was fi rst published in 1980 by Chuck
Seitz,4 in an infl uential overview of asynchronous design; the
approach was used even earlier by Evans & Sutherland Com-
puter Corp. in its fi rst commercial graphics system, LDS-1
[1969]. The term was later introduced and formalized by Cha-
piro.1 Synchronous components interact with the asynchro-
nous network using either asynchro-
nous/synchronous interface circuits
or pausible clocks.2,3 Fig. A shows a
simplifi ed GALS system with four syn-
chronous cores. Each core can oper-
ate as a separate voltage-frequency
island (VFI), which is connected to a
switch (SW) of an asynchronous com-
munication network through an associ-
ated network interface (NI). A number
of successful GALS multicore archi-
tectures have been developed,2-3,5-7
including those supporting fi ne-grain
message passing8 and latency-insen-
sitive communication.9

As a recent example, STMicroelectronics’ Platform 2012
(P2012)10 includes a fully-asynchronous network-on-chip,11
supporting a highly-reconfi gurable accelerator-based many-
core GALS architecture which facilitates fi ne-grain power, reli-
ability and variability management. The fi rst prototype deliv-
ered 80 GOPS performance with only 2W power consumption.
It has evolved recently into the company’s STHORM Platform.

Interesting specialized applications which benefi t from a
GALS architecture include large-scale neuromorphic systems
(see “Applications” section), as well as approaches to en-
hance resilience to side-channel attacks.12 Another interesting
approach with a GALS-like fl avor is "proximity communication,"
which aims to overcome the latency bottleneck of inter-chip
communication by exploiting capacitive coupling at their inter-
faces, instead of using traditional wired interconnect.13

Overall, there is a surge of interest and activity in GALS
design, in both industry and academia, as systems become
larger-scale and more heterogeneous, and variability and
timing unpredictability become critical factors.

As an addendum, it is worth noting that the term “GALS”
has at times been stretched to describe non-GALS systems.
In its original and widely-used sense,1,3,4 a GALS system in-
cludes a fully-asynchronous interconnection network, includ-
ing handshaking channels, to integrate synchronous com-
ponents. Systems containing multiple synchronous cores,
operating at different clock rates, which are directly con-
nected using synchronizers, e.g. bi-synchronous FIFO’s, are

An alternative to constructing fully-asynchronous systems
is a hybrid approach, integrating synchronous components
(i.e. cores, memories, accelerators, I/O units, etc.) using an
asynchronous communication network, which together form a
globally-asynchronous locally-synchronous (GALS) system.1-3

For some applications, this approach provides the best of both
worlds: allowing the design reuse of synchronous intellectual
property (IP) blocks, while combining them with fl exible asyn-
chronous interconnect as a global integrative medium. The
elimination of fi xed-rate global clocking on the communication
network can provide a highly-scalable, low-power and robust
mechanism for assembling complex systems.

A GALS approach was fi rst published in 1980 by Chuck
Seitz,4 in an infl uential overview of asynchronous design; the
approach was used even earlier by Evans & Sutherland Com-
puter Corp. in its fi rst commercial graphics system, LDS-1
[1969]. The term was later introduced and formalized by Cha-
piro.1 Synchronous components interact with the asynchro-
nous network using either asynchro-
nous/synchronous interface circuits
or pausible clocks.2,3 Fig. A shows a
simplifi ed GALS system with four syn-
chronous cores. Each core can opper-
ate as a separate voltage-frequency
island (VFI), which is connected to a
switch (SW) of an asynchronous com-
munication network through an associ-
ated network interface (NI). A number
of successful GALS multicore archi-
tectures have been developed,2-3,5-7

including those supporting fi ne-grain
message passing8 and latency-insen-
sitive communication.9

As a recent example, STMicroelectronics’ Platform 2012
(P2012)10 includes a fully-asynchronous network-on-chip,11

susupppporortitingng aa hhigighlhly-y rerecoconfinfiggururabablele aaccccelelereratatoror-bbasaseded mmanany-y
core GALS architecture which facilitates fi ne-grain power, reli-
ability and variability management. The fi rst prototype deliv-
ered 80 GOPS performance with only 2W power consumption.
It has evolved recently into the company’s STHORM Platform.

Interesting specialized applications which benefi t from a
GALS architecture include large-scale neuromorphic systems
(see “Applications” section), as well as approaches to en-
hance resilience to side-channel attacks.12 Another interesting
approach with a GALS-like fl avor is "proximity communication,"
which aims to overcome the latency bottleneck of inter-chip
communication by exploiting capacitive coupling at their inter-
faces, instead of using traditional wired interconnect.13

OvOvereralalll, ttheherere iiss aa susurgrgee ofof iintntereresestt anandd acactitivivityty iinn GAGALSLS
design, in both industry and academia, as systems become
larger-scale and more heterogeneous, and variability and
timing unpredictability become critical factors.

As an addendum, it is worth noting that the term “GALS”
has at times been stretched to describe non-GALS systems.
In its original and widely-used sense,1,3,4 a GALS system in-
cludes a fully-asynchronous interconnection network, includ-s
ing handshaking channels, to integrate synchronous com-
ponents. Systems containing multiple synchronous cores,
operating at different clock rates, which are directly con-
nected using synchronizers, e.g. bi-synchronous FIFO’s, are

GALS Systems

Fig A. A multicore GALS
system

more properly referred to as multi-synchronous systems.7

A useful general classifi cation scheme for mixed-timing
systems was proposed by Messerschmitt,3,14 based on the
relationship between different clock domains. In a mesochro-
nous system, synchronous components operate at exactly
the same frequency, but with unknown yet stable phase dif-
ference.15 In a plesiochronous system, synchronous compo-
nents operate at the same nominal frequency, but may have
a slight frequency mismatch, e.g. a few parts per million. Fi-
nally, in a heterochronous system, synchronous components
can operate at arbitrary unrelated frequencies.

References

 1. D. M. Chapiro, “Globally-asynchronous locally-synchronous
systems,” Ph.D. dissertation, Dept. Comput. Sci., Stanford
Univ., Stanford, CA, USA, 1984.

 2. M. Krstic et al., “Globally asynchronous, locally synchro-
nous circuits: Overview and outlook,” IEEE Des. Test,
vol. 24, no. 5, pp. 430–441, 2007.

 3. P. Teehan, M. Greenstreet, and G. Lemieux, “A survey
and taxonomy of GALS design styles,” IEEE Des. Test,
vol. 24, no. 5, pp. 418–428, 2007.

 4. C. L. Seitz, ‘‘System Timing,’’ in Introduction to VLSI Sys-
tems, C. A. Mead and L. A. Conway, Eds. Addison-
Wesley, 1980, pp. 218–262.

 5. J. Muttersbach, T. Villiger and W. Fichtner, “Practical
design of globally-synchronous locally-asynchronous
systems,” in Proc. 6th IEEE Int. Symp. Adv. Res. ASYNC,
2000, pp. 52–59.

 6. S. Moore et al., “Point to point GALS interconnect,” in
Proc. 8th IEEE Int. Symp. ASYNC, 2002, pp. 69–75.

 7. A. Sheibanyrad, A. Greiner, and I. Miro-Panades, ‘‘Multi-
synchronous and fully asynchronous NoCs for GALS
architectures,’’ IEEE Des. Test, vol. 25, no. 6, pp.
572–580, 2008.

 8. N. J. Boden et al., ‘‘Myrinet: A gigabit-per-second local
area network,’’ IEEE Micro, vol. 15, no. 1, pp. 29–36,
Jan./Feb. 1995.

 9. M. Singh and M. Theobald, “Generalized latency-insen-
sitive systems for single-clock and multi-clock architec-
tures,” in Proc. ACM/IEEE DATE, 2004, pp. 1008–1013.

10. L. Benini et al., “P2012: building an ecosystem for a
scalable, modular and high-effi ciency embedded com-
puting accelerator,” in Proc. ACM/IEEE DATE, 2012,
pp. 983–987.

11. Y. Thonnart, P. Vivet, and F. Clermidy, “A fully-asynchronous
low-power framework for GALS NoC integration,” in Proc.
ACM/IEEE DATE, 2010, pp. 33–38.

12. R. Soares et al., “A robust architectural approach for
cryptographic algorithms using GALS pipelines,” IEEE
Des. Test, vol. 28, no. 5, pp. 62–71, 2011.

13. D. Hopkins et al., “Circuit techniques to enable 430 Gb/s
/mm2 proximity communication,” in Proc. IEEE ISSCC,
2007, pp. 368–369.

14. D. G. Messerschmitt, ‘‘Synchronization in digital sys-
tem design,” IEEE J. Sel. Areas Commun., vol. 8, no. 8,
pp. 1404–1419, Oct.1990.

15. M. R. Greenstreet, “Implementing a STARI Chip,” in Proc.
ICCD, 1995, pp. 38–43.

IEEE Design & Test10

Asynchronous DesignVPart 1: Overview and Recent Advances

Over the last decade, networks-on-chip (NoCs) have be-
come the de facto standard approach for structured on-chip
communication, both for lowpower embedded systems and
high-performance chip multi-processors.1 These on-chip net-
works typically replace traditional ad hoc bus-based com-
munication with packet switching, and can be targeted to a
variety of cost functions (faulttolerance, power, latency, satura-
tion throughput, quality-of-service [QoS]) and parameters (net-
worktopology, channel width, routing strategies).

Since the NoC approach separates the communication in-
frastructure, and its timing, from processing elements, it is a
natural match for an asynchronous paradigm. Asynchronous
interconnect eliminates the need for global clock management
across a large network, thereby providing better support for
scalability, timing robustness and low power, and avoids the
challenge of instrumenting complex clock-gating in a highly
distributed communication structure.

A number of asynchronous and GALS NoCs have been pro-
posed in the last decade or so. An early approach, Chain,2
used delay-insensitive codes on channels for crosstalk miti-
gation and ease of physical design, and was effectively ap-
plied to an ARM-based smart-card chip. Several approaches
to support QoS have been proposed, including combining
guaranteed service (GS) and best effort (BE) traffi c,3 as well as
multiple service levels.4 A comprehensive asynchronous NoC
framework has been developed to provide dynamic voltage
and frequency scaling (DVFS) and fi ne-grain power manage-
ment,5 while other approaches have targeted fault tolerance6
and arbitration for high-radix switches.7 Automated design
fl ows are also being developed,8,9 leveraging commercial
synchronous CAD tools, which use directives to meet asyn-
chronous path timing and latch constraints, as well as judi-
cious control of optimization modes to avoid the introduction
of hazards. A recent asynchronous time-division-multiplexed
(TDM) NoC demonstrates correct operation without any global
synchronization, while tolerating signifi cant skews on different
network interfaces.10

Power and performance benefi ts of asynchronous NoCs
have been demonstrated for high-performance shared-memo-
ry chip multi-processors11 and Ethernet switch chips,12 as well
as their facilitation of extreme fi ne-grain power management
and fl exible integration of many-core GALS architectures (see
STHORM processor discussion in “GALS” sidebar). The end-
to-end latency benefi ts of asynchronous NoCs over synchro-
nous NoCs have also been demonstrated,8-9,11-12 due to the low
forward latency of individual asynchronous router nodes, and
the ability of packets to advance without continual alignment
to a global clock.

As a recent example, an asynchronous NoC switch architec-
ture,9 using single-rail bundled data and two-phase communi-
cation, obtained a 45% reduction in average energy-per-packet
and 71% area reduction compared to a highly-optimized syn-
chronous single-cycle NoC switch, xpipes Lite, in the same
40nm technology. Additional latency benefi ts have been ob-
tained using low-overhead early arbitration techniques.13

One interesting emerging domain where asynchronous and
GALS NoCs have played a key role, is in the development of
neuromorphic chips (see “Applications” section). These rely on
the scalability and ease-of-integration of asynchronous inter-
connect, and the inherent event-driven operation for low power.
One recent example, IBM’s TrueNorth, integrates 4096 neuro-
synaptic cores on a single chip, which models 1 million neu-
rons and 256 million synapses, in the largest chip developed
to date by IBM (5.4 billion transistors), where the large-scale-
integration is facilitated by using a fully-asynchronous NoC.

Overall, the NoC area is a promising arena where the inte-
grative benefi ts of asynchronous design are making important
inroads.

References

 1. W. J. Dally and B. Towles, “Route packets, not wires: On-chip
interconnection networks,” in Proc. ACM/IEEE DAC, 2001,
pp. 684–689.

 2. J. Bainbridge and S. Furber, ‘‘Chain: A delay-insensitive chip
area interconnect,’’ IEEE Micro, vol. 22, no. 5, pp. 16–23,
Sep./Oct. 2002.

 3. T. Bjerregaard and J. Sparsø, “A router architecture for con-
nection-oriented service guarantees in the MANGO clock-
less network-on-chip,” in Proc. ACM/IEEE DATE, 2005, pp.
1226–1231.

 4. R. Dobkin et al., “An asynchronous router for multiple ser-
vice levels networks on chip”, in Proc. 11th IEEE Int. Symp.
ASYNC, 2005, pp. 44–53.

 5. E. Beigne et al., “Dynamic voltage and frequency scaling ar-
chitecture for units integration within a GALS NoC,” in Proc.
ACM NOCS, 2008, pp. 129–138.

 6. M. Imai and T. Yoneda, “Improving dependability and perfor-
mance of fully asynchronous on-chip networks,” in Proc. 17th
IEEE Int. Symp. ASYNC, 2011, pp. 65–76.

 7. S. R. Naqvi and A. Steininger, “A tree arbiter cell for high
speed resource sharing in asynchronous environments,” in
Proc. ACM/IEEE DATE, 2014.

 8. Y. Thonnart, E. Beigne, and P. Vivet, “A Pseudo-synchronous
implementation fl ow for WCHB QDI asynchronous circuits,”
in Proc. 18th IEEE Int. Symp. ASYNC, 2012, pp. 73–80.

 9. A. Ghiribaldi, D. Bertozzi, and S. M. Nowick, “A transition-
signaling bundled data NoC switch architecture for cost-ef-
fective GALS multicore systems,” in Proc. ACM/IEEE DATE,
2013, pp. 332–337.

10. E. Kasapaki and J. Sparsø, “Argo: A time-elastic time-divi-
sion-multiplexed noC using asynchronous routers,” in Proc.
20th IEEE Int. Symp. ASYNC, 2014, pp. 45–52.

11. M. N. Horak et al., “A low-overhead asynchronous intercon-
nection network for GALS chip multiprocessors,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol. 30, no. 4, pp.
494–507, 2011.

12. A. Lines, “Asynchronous interconnect for synchronous SoC
design,” IEEE Micro, vol. 24, no. 1, pp. 32–41, 2004.

13. W. Jiang et al., “A lightweight early arbitration method for low-
latency asynchronous 2D-mesh NoC’s,” in Proc. ACM/IEEE
DAC, 2015.

Networks-on-Chip

May/June 2015 11

responds by asserting ack, in the active or evaluate

phase. The two signals are then deasserted, in turn,

in the return-to-zero or reset phase. In contrast, in a

two-phase protocol, there is no return-to-zero phase:

a single toggle on req indicates a request, followed

by a toggle on ack to indicate an acknowledge.

Both two-phase and four-phase protocols are

widely used, with interesting tradeoffs between

them. A four-phase protocol has the benefit of return-

ing interfaces to a unique state, i.e., all-zero, which

typically simplifies hardware design. It is also a good

match for dynamic logic, where the RZ phase directly

corresponds to the precharge phase [4], [5], [7], [10].

However, the protocol requires two complete round-

trip channel communications per transaction, which

can result in lower throughput. A two-phase protocol

may involvemore complex hardware design, but only

requires one round-trip communication per transac-

tion, which can provide higher throughput V and

sometimes still has quite low complexity [22], [23],

[24]. Alternative protocols using pulse-mode or single-

track handshaking have also been proposed.

Once a communication protocol for a channel

has been defined, data communication is typically

needed. The data itself typically replaces the single

req wire in the above example. There are two

common data encoding schemes: 1) delay-insensitive

(DI) codes, and 2) single-rail bundled data.

Figure 3a illustrates delay-insensitive encoding on

a simple two-bit example. A common approach, dual-

rail encoding, is used for each bit, X and Y, which are

each encoded using two rails or wires (X1/X0 for X,

Y1/Y0 for Y). Assuming a four-phase protocol, all wires

are initially zero, and each bit is encoded as 00,

representing a NULL or spacer token (i.e., no valid

data). A one-hot encoding scheme is used: the

transmission of a 1 (0) value on X involves asserting

wire X1 (X0) high, and similarly for the transmission

on bit Y. Once the receiver has obtained a complete

valid codeword, it asserts ack. The reset phase then

occurs, where data and ack are deasserted in turn. A

completion detector (CD) is used by the receiver to

identify when a valid codeword has been received.

Dual-rail encoding is widely used [5], [7], [17],

and is one simple instance of a delay-insensitive

code. In particular, note that, regardless of the trans-

mission time and relative skew of the distinct bits,

the receiver can unambiguously identify when every

bit is valid, by checking for the arrival of a legal

codeword (01 or 10) on each bit. As a result, this ap-

proach provides great resilience to physical and

operating variability. Alternative DI codes have also

been widely explored, providing cost tradeoffs in

coding efficiency, dynamic power, and hardware

overhead, including 1-of-4, m-of-n [24], systematic,

level-encoded dual-rail (LEDR) and level-encoded

transition-signalling (LETS) [24] codes.

Figure 3b shows an alternative encoding approach,

single-rail bundleddata. A standard synchronous-style

data channel is used, i.e. with

binary encoding. One extra req

wire is added, serving as a

‘‘bundling signal’’ or local strobe,

which must arrive at the receiver

after all data bits are stable and

valid. Both four-phase [3] and

two-phase [22], [23] bundled

protocols are widely used.

Interestingly, the bundleddata

scheme allows arbitrary glitches

on the data channel, as long as

data becomes stable and valid

before the req signal is transmit-

ted. Typically, data must remain

Figure 1. An asynchronous channel.

Figure 2. Asynchronous handshake protocols.

IEEE Design & Test12

Asynchronous DesignVPart 1: Overview and Recent Advances

valid from before the req is

transmitted to after an ack is re-

ceived. Therefore, the scheme

facilitates the use of synchro-

nous-style computation blocks.

It also provides good coding

efficiency, with only one extra

req wire added to the datapath.

However, unlike DI codes, a one-

sided timing constraint must be

enforced: the req delay must

always be longer than worst-

case data transmission. To sup-

port this constraint, a small

matched delay is added, either

an inverter chain or carefully

replicated portion of the critical

path. Unlike in a clocked system,

though, this is a localized con-

straint: stages can be highly

unbalanced, each with its own

distinct matched delay. More-

over, the timing margins can be

made fairly tight because some parameters (e.g.,

process, voltage, temperature) tend to be locally

more uniform.

Finally, a hybrid scheme, called speculative

completion [26], uses bundled data, but also allows

variable-latency completion, including better than

worst-case, based on the actual data inputs. High-

performance parallel prefix adders (Brent-Kung,

Kogge-Stone) have been demonstrated, operating

at faster rates than synchronous designs.

Pipelining
Pipelining is a fundamental technique to in-

crease concurrency and boost throughput in high-

performance digital systems. All modern high-speed

processors, multimedia and graphics units, and

signal processors are pipelined. In a typical pipe-

lined implementation, complex function blocks are

subdivided into smaller blocks, registers are inserted

to separate them, and a clock is applied to all re-

gisters. In an asynchronous system, no global clock

is used and, instead, the interaction of neighboring

stages is coordinated by a handshaking protocol.

Developing better pipeline protocols and their

efficient circuit-level implementation has been the

focus of many researchers over the past two to three

decades. We review three leading representative

styles, starting with the seminal work of Sutherland.

More details can be found in a recent survey [24].

Sutherland’s micropipeline. Figure 4 shows a

basic micropipeline [22], which uses a two-phase

handshaking protocol and single-rail bundled data.

Each interface between adjacent stages has single-

rail data and a bundling signal ðreqiÞ going forward,

and an acknowledgment ðackiÞ going backward. A

delay element is added to match the worst-case

delay of the corresponding logic block.

The pipeline operates according to a so-called

capture-pass protocol. The protocol is implemented

using a simple control chain of Muller C-elements1

[22], [24] (with inversions on the right inputs),

operating on a set of specialized capture-pass data-

path latches. The latches are initially all normally

transparent, unlike synchronous pipelines, so the

entire pipeline forms a flow-through combinational

path. Locally, only after data advances through an

individual stage’s latches, the corresponding request

reqi�1 causes a transition on the C (i.e., capture)

control input, which makes those latches opaque,

thereby storing and protecting the data. Once data

1A C-element is a basic asynchronous storage element;
assuming inputs A and B, the output is 1 (0) if both inputs are
1 (0), otherwise it holds its prior value.

Figure 3. Asynchronous data encoding schemes. (a) Dual-rail encoding;
(b) single-rail bundled data.

May/June 2015 13

advances through the next stage’s latches, where the

data is safely stored, a transition on the P (i.e., pass)

control input via ackiþ1, makes the current stage’s

latches transparent again, completing an entire cycle.

The latches indicate the completion of capture and

pass operations via Cd (capture done) and Pd (pass

done) outputs, respectively. Effectively, each data item

initiates a ‘‘wavefront,’’ which advances through the

pipeline and is protected by a series of latch-capture

operations. Predecessor stages, behind the wavefront,

are subsequently freed up through a series of pass

operations, once data has been safely copied to the

next stage. The old data can then be overwritten by

the next wave front.

Although micropipelines require specialized com-

ponents for implementation, they are remarkable in

the simplicity and elegance of their structure and

operation, and have inspired

several more advanced ap-

proaches. Their introduction by

Sutherland also provided deeper

insights into the nature of asyn-

chronous systems and triggered

a resurgence of research activity

in asynchronous design.

Mousetrap pipeline. We devel-

opedMousetrap at ColumbiaUni-

versity to be a high-performance

pipeline that supports the use of

an entirely standard cell method-

ology [23], [24]. Although its

two-phase capture-pass protocol

is based on that of micropipe-

lines, it has simpler control cir-

cuits and data latches, with much lower area and

delay overheads. Figure 5 shows a basic Mousetrap

pipeline. The local control for each stage is only a

single combinational exclusive-NOR (XNOR) gate,

and the storage for each stage is a single bank of level-

sensitive D-latches, both of which are available in

standard cell libraries.

Although the implementation is quite different,

the overall operation is similar to that of micropipe-

lines. Initially assume that all reqi and acki signals

are initially at 0, and all the data latches are there-

fore transparent. As new data arrives into stage i from

the left, and passes through the latch, the correspond-

ing reqi bundling signal toggles. As a result, the stage’s

XNOR toggles from 1 to 0, thereby capturing data in

the latch. It also requests the next data item from its left

neighbor by toggling acki . Subsequently, when stage i

Figure 5. Mousetrap pipeline.

Figure 4. Sutherland’s micropipeline.

IEEE Design & Test14

Asynchronous DesignVPart 1: Overview and Recent Advances

receives an acknowledgment ackiþ1 from its right

neighbor, stage i’s XNOR toggles back to 1, making

stage i’s latch transparent, and completing the cycle.

The relatively lightweight control and storage struc-

tures allow the pipeline to achieve high throughput:

2.4 giga items/s FIFOs (in 180 nm), and a greatest

common divisor (GCD) test chip at 2.1 GHz (in

130 nm technology). Mousetrap circuits have been

used in several recently-proposed asynchronous

NoC designs (for example, see Horak et al. and

Kasapaki/Sparsø in the ‘‘Networks-on-Chip’’ sidebar).

GasP pipeline. GasP was developed at Sun Micro-

systems Laboratories to push the limit of achievable

performance by using an aggressive custom circuit

style for specialized applications [25], A distinctive

feature is that, instead of the usual pair of request

and acknowledge wires, each control channel be-

tween adjacent stages consists of a single wire, i.e.,

‘‘single-track channel,’’ allowing bi-directional com-

munication. Handshaking is performed via carefully

generated pulses: a forward request transition sets the

state of the control channel, and a subsequent

reverse acknowledgment transition resets the chan-

nel state. Hence, GasP effectively combines the

benefits of both two-phase and four-phase protocols

on a single wire. Circuit designs are highly optimized

for delay, but the pulse-based protocol imposes two-

sided timing constraints (i.e., short and long path

requirements), requiring careful balancing of path

delays to ensure correct operation [24].

Dynamic logic pipelines. Dynamic logic datapaths

are common in high-performance systemsVespe-

cially in the core of ALUs in high-speed micropro-

cessors and ASICsVdespite the

greater design and validation

effort required. Interestingly,

dynamic logic is an especially

good match for asynchronous

pipelines. In particular, local

handshaking obviates the need

for the complex and carefully

controlled multiphase clocking

that is typical of synchronous

dynamic circuits, and noise-in-

duced delay variations can be

robustly handled through the use

of DI encoding [24]. Further-

more, a unique feature of many asynchronous

dynamic pipelines is that they are entirely latchless,

storing data directly on logic block outputs with

keepers. As a result, dynamic logic pipelines have

been used in several recent high-performance asyn-

chronous commercial products [4], [5], [24].

We review the PS0 pipeline style by Williams and

Horowitz [7], [24], which was used in the design of

high-speed floating-point dividers at HaL Computers

in the 1990s, and was influential on much subse-

quent research.

Figure 6 shows the basic structure of a PS0 pipe-

line; each stage consists of a function block composed

of dynamic logic, and a completion detector (CD).

The datapath uses DI coding (in particular, dual-rail),

and there are no explicit registers between adjacent

stages. Each function block alternates between an

evaluate phase and a precharge phase. Initially, the

function block outputs are reset to 0, and in the eval-

uate phase, awaiting data inputs. In the evaluate

phase, each block computes after its data inputs

arrive. In the precharge phase, the function block is

reset, with all its outputs returning to 0. The CD iden-

tifies when the stage’s computation is complete, or

when its outputs have been reset to 0. The single input

control for each stage, Prech/�Eval, is connected

from the output of the next stage’s CD. The interaction

between stages follows a simple protocol: a stage is

precharged whenever the next stage finishes evalua-

tion, and a stage is enabled to evaluate whenever the

next stage finishes its precharge. This protocol ensures

that two successive wavefronts of data are always

separated by a reset spacer. The use of fast dynamic

logic without latches yields purely combinational

execution times, even for iterative computations that

are implemented using self-timed rings.

Figure 6. PS0 pipeline.

May/June 2015 15

A number of other dynamic pipeline styles have

been proposed [24], with a range of tradeoffs in per-

formance, robustness and other cost metrics. These

include dynamic GasP by Ebergen et al. (Sun Micro-

systems) [25]; PCHB/PCFB by Lines; high-capacity

(HC) and lookahead pipelines (LP) by Singh and

Nowick; IPCMOS by Schuster et al. (IBM Research);

and single-track styles by Beerel et al. Asynchronous

pipelines have been used commercially in Sun’s

UltraSPARC IIIi computers for fast memory access; in

Achronix’s Speedster 22i FPGA’s [5]; in the Ethernet

switch chips of Intel/Fulcrum Microsystems [4]; and

experimentally at IBM Research for a low-latency

finite-impulse response (FIR) filter chip [10].

Synchronization and arbitration
Two related capabilities are needed when han-

dling the continuous-time operation of an asynchro-

nous system: synchronization and arbitration.

Synchronization involves the interfacing of asyn-

chronous and synchronous systems, or two unrelat-

ed synchronous systems, where, at the boundary

crossing, an asynchronous signal must be safely

realigned to a clock domain.

A good overview of the topic

has been presented by Gino-

sar [27]. Any direct connec-

tion of asynchronous inputs

to synchronous registers can

cause setup time violations,

resulting in metastable oper-

ation and possible failure,

such as storing of intermedi-

ate voltage values or even

oscillatory behavior. The first

detailed published results

identifying and evaluating

metastability were presented in 1973 by Chaney

and Molnar (see [27]).

The classic solution for a single bit is to provide a

basic synchronizer: double or triple flip-flops in

series, to ensure sufficient stabilization time to pro-

duce a clean synchronous output, with extremely

high mean-time-between-failure (MTBF). Detailed

synchronizer performance analysis has been pro-

posed, which considers the impact of noise and

thermal effects, along with directions to improve

circuit design [28]. More general solutions have

been proposed for synchronization blocks which

support buffering and flow control [29], [30]. The

approach by Chakraborty and Greenstreet provides

an integrated study of synchronizing two clock

domains, ranging from mesochronous to hetero-

chronous communication [29].

Figure 7 illustrates an example of a mixed-clock

FIFO by Chelcea and Nowick [30], which can inter-

face two arbitrary clock domains, a sender (put

interface) and a receiver (get interface). The design

is one of a complete family of modular mixed-timing

interfaces, including other variants to support mixed

Figure 8. A two-way arbiter. (a) Block diagram, (b) timing, and (c) implementation.

Figure 7. Mixed-clock FIFO.

IEEE Design & Test16

Asynchronous DesignVPart 1: Overview and Recent Advances

asynchronous/synchronous communication which

are needed in GALS systems. The FIFO is constructed

as a simple token ring, with pointers to head and tail

locations. Each interface operates independently at

its own clock rate, and data items do not move once

deposited. Full and empty detectors are used to avoid

overflow and underflow, respectively. A novel feature

is that only three synchronizers are required, regard-

less of the number of cells in the ring, hence it is

highly scalable. It also avoids synchronization perfor-

mance penalties in steady-state communication

scenarios.

Arbitration involves the resolution of two or more

competing signals requesting a shared resource. In

synchronous design, it is a simple operation: at the

start of each clock cycle, existing requests are exam-

ined and one is selected as a winner. In asynchro-

nous design, however, inputs arrive in continuous

time, and resolution must be guaranteed to be clean

and safe, regardless of the signal arrival times.

The basic component to resolve a two-way

asynchronous arbitration is a mutual-exclusion ele-

ment (mutex, or ME), shown in Figure 8, due to Seitz.

This analog component guarantees a hazard-free

output. In principle, as two competing inputs arrive

closer together, its resolution time, i.e., latency, can

become arbitrarily long. In practice, though, only

extremely close spacing of samples (e.g., G 1 ps)

will result in a relatively long delay. More complex

asynchronous arbiters typically use mutexes as

building blocks. Two- and four-way arbiters are

fundamental components in router nodes in asyn-

chronous NoC’s. N-way asynchronous arbiters have

also been proposed, as well as priority arbiters.

IN THIS PART, we have presented an overview of

some key advances of asynchronous design, and

discussed emerging application areas where asyn-

chrony is poised to play a critical role. We have also

reviewed technical foundations, as well as highlight-

ed recent developments in GALS and NoC design.

Part 2 of this article focuses on designmethodologies

and systems, including logic and high-level synthe-

sis, computer-aided design (CAD) tool flows for de-

sign and test, and processors and architectures. h

Acknowledgment
The authors appreciate the funding support of

the National Science Foundation under Grants CCF-

1219013, CCF-0964606 and OCI-1127361.

h References
[1] S. H. Unger, Asynchronous Sequential Switching

Circuits. New York, NY, USA: Wiley, 1969.

[2] D. EMuller andW. C. Bartky,ATheory of Asynchronous

Circuits. Cambridge, MA, USA: Annals of Computing

Laboratory of Harvard University, 1959, pp. 204–243.

[3] H. van Gageldonk et al., ‘‘An asynchronous low-power

80C51 microcontroller,’’ in Proc. Int. Symp. Adv.

Res. Asynch. Circuits Syst. (ASYNC 98), 1998,

pp. 96–107.

[4] M. Davies et al., ‘‘A 72-Port 10G Ethernet

switch/router using quasi-delay-insensitive

asynchronous design,’’ in Proc. Int. Symp. Asynch.

Circuits Syst. (ASYNC 14), 2014, pp. 103–104.

[5] J. Teifel and R. Manohar, ‘‘Highly pipelined

asynchronous FPGAs,’’ in Proc. ACM/SIGDA Int.

Symp. Field Programmable Gate Arrays (FPGA 04),

2004, pp. 133–142.

[6] P. Merolla et al., ‘‘A million spiking-neuron integrated

circuit with a scalable communication network and

interface,’’ Science, vol. 345, no. 6197, pp. 668–673,

2014.

[7] T. E. Williams and M. A. Horowitz, ‘‘A zero-overhead

self-timed 160 ns 54 b CMOS divider,’’ IEEE J.

Solid-State Circuits, vol. 26, no. 11, pp. 1651–1661,

1991.

[8] K. M. Fant, Logically Determined Design. New York,

NY, USA: Wiley, 2005.

[9] K. S. Stevens et al., ‘‘An asynchronous instruction

length decoder,’’ IEEE J. Solid-State Circuits, vol. 36,

no. 2, pp. 217–228, 2001.

[10] M. Singh et al., ‘‘An adaptively pipelined mixed

synchronous-asynchronous digital FIR filter chip

operating at 1.3 gigahertz,’’ IEEE Trans. Very

Large Scale Integr. (VLSI) Syst., vol. 18, no. 7,

pp. 1043–1056, 2010.

[11] T. Liu et al., ‘‘Asynchronous computing in sense

amplifier-based pass transistor logic,’’ IEEE Trans.

Very Large Scale Integr. (VLSI) Syst., vol. 17, no. 7,

pp. 883–892, 2009.

[12] L. S. Nielsen and J. Sparsø, ‘‘Designing asynchronous

circuits for low power: An IFIR filter bank for a digital

hearing aid,’’ Proc. IEEE, vol. 87, no. 2, pp. 268–281,

1999.

[13] K.-L. Chang et al., ‘‘Synchronous-logic and

asynchronous-logic 8051 microcontroller cores for

realizing the internet of things: A comparative study

on dynamic voltage scaling and variation effects,’’

IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 3, no. 1,

pp. 23–34, 2013.

May/June 2015 17

[14] J. F. Christmann et al., ‘‘Bringing robustness and

power efficiency to autonomous energy harvesting

systems,’’ IEEE Design Test Comput., vol. 28, no. 5,

pp. 84–94, 2011.

[15] F. Aeschlimann et al., ‘‘Asynchronous FIR filters:

Towards a new digital processing chain,’’ in Proc.

Int. Symp. Asynch. Circuits Syst. (ASYNC-04), 2004,

pp. 198–206.

[16] C. Vezyrtzis, S. M. Nowick, and Y. Tsividis, ‘‘A flexible,

event-driven digital filter with frequency response

independent of input sample rate,’’ IEEE J. Solid-State

Circuits (JSSC), vol. 49, no. 10, pp. 2292–2304, 2014.

[17] P. Shepherd et al., ‘‘A robust, wide-temperature data

transmission system for space environments,’’ in

Proc. IEEE Aerospace Conf. (AERO 2013), 2013,

pp. 1812–1819.

[18] F. Peper et al., ‘‘Laying out circuits on asynchronous

cellular arrays: A step towards feasible nanocomputers?’’

Nanotechnology, vol. 14, no. 4, pp. 1651–1661, 2003.

[19] M. Vacca, M. Graziano, and M. Zamboni,

‘‘Asynchronous solutions for nanomagnetic logic

circuits,’’ ACM J. Emerg. Technol. Comput. Syst.

(JETC), vol. 7, no. 4, pp. 15:1–15:18, 2011.

[20] N. Karaki et al., ‘‘A flexible 8b asynchronous

microprocessor based on low-temperature

poly-silicon TFT technology,’’ in Proc. IEEE Int.

Solid-State Circuits Conf. (ISSCC-05), 2005,

pp. 272–273, pg. 598.

[21] M. Kishinevsky et al., Concurrent Hardware: The

Theory and Practice of Self-Timed Design. New York,

NY, USA: Wiley, 1994.

[22] I. E. Sutherland, ‘‘Micropipelines,’’ Commun. ACM,

vol. 32, no. 6, pp. 720–738, 1989.

[23] M. Singh and S. M. Nowick, ‘‘MOUSETRAP:

High-speed transition-signaling asynchronous

pipelines,’’ IEEE Trans. Very Large Scale Integr. (VLSI)

Syst., vol. 15, no. 6, pp. 684–698, 2007.

[24] S. M. Nowick and M. Singh, ‘‘High-performance

asynchronous pipelines: An overview,’’ IEEE Design &

Test, vol. 28, no. 5, pp. 8–22, 2011.

[25] I. Sutherland and S. Fairbanks, ‘‘GasP: A minimal FIFO

control,’’ in Proc. In. Symp. Asynch. Circuits Syst.

(ASYNC 01), 2001, pp. 46–53.

[26] S. M. Nowick et al., ‘‘Speculative completion for the

design of high-performance asynchronous dynamic

adders,’’ in Proc. 3rd Int. Symp. Adv. Res. Asynch.

Circuits Syst. (ASYNC 97), 1997, pp. 210–223.

[27] R. Ginosar, ‘‘Metastability and synchronization:

A tutorial,’’ IEEE Design & Test, vol. 28, no. 5,

pp. 23–35, 2011.

[28] D. J. Kinniment, A. Bystrov, and A. V. Yakovlev,

‘‘Synchronization circuit performance,’’ IEEE

J. Solid-State Circuits, vol. 37, no. 2, pp. 202–209,

2002.

[29] A. Chakraborty and M. R. Greenstreet, ‘‘Efficient

self-timed interfaces for crossing clock domains,’’ in

Proc. 9th IEEE Int. Symp. Asynch. Circuits Syst.

(ASYNC 03), 2003, pp. 78–88.

[30] T. Chelcea and S. M. Nowick, ‘‘Robust interfaces

for mixed-timing systems,’’ IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 12, no. 8, pp. 857–873,

2004.

Steven M. Nowick is a professor of computer
science at Columbia University, New York, NY, USA.
His research interests include the design and
optimization of asynchronous and mixed-timing
(i.e., GALS) digital systems, scalable and low-
latency on-chip interconnection networks for
shared-memory parallel processors and embedded
systems, extreme low-energy digital systems, neu-
romorphic computing, and variation-tolerant global
communication. He has a PhD degree in computer
science from Stanford University. He is a Fellow of
the IEEE.

Montek Singh is an associate professor of
computer science at the University of North Carolina
at Chapel Hill, NC, USA. His research interests
include asynchronous and mixed-timing circuits and
systems; CAD tools for design, analysis, and optimi-
zation; high-speed and low-power VLSI design; and
applications to emerging computing technologies,
energy-efficient graphics, and image sensing hard-
ware. He has a PhD degree in computer science
from Columbia University, New York, NY, USA.

h Direct questions and comments about this article
to Steven M. Nowick, Department of Computer
Science, Columbia University, New York, NY 10027
USA; nowick@cs.columbia.edu; or to Montek Singh,
Department of Computer Science, University of North
Carolina, Chapel Hill, NC 27599 USA; montek@cs.
unc.edu.

IEEE Design & Test18

Asynchronous DesignVPart 1: Overview and Recent Advances

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

