
1	

CSEE W4823x Handout #30a
Prof. Nowick November 14, 2016

	

Introduction to Register-Transfer Level (RTL) Design:

from Generalized ASM’s to a Microarchitecture
[PART I]

	

	

Generalized ASM’s: combine both datapath operations and control in a single flow-chart-
like specification.

(See D. Gajski, Principles of Digital Design, Prentice Hall, 1997, for more details.)

Example #1: Specify and Design a “1’s Counter”

[More material on this example, using a somewhat different approach, is in Gajski, ch. 8.3.]

Step #0. Verbal Description of Algorithm:

Given a 32-bit binary number placed on “Input” bus:
 - count the # of 1 bits in this number
 - place result on “Output” bus

Goal: design both control (FSM) and datapath (select and connect datapath blocks)

 = “microarchitecture”

Assume:
 - global input: Start
 à wait for Start =1 before running algorithm

 - global output: Done
 à assert Done =1 for 1 cycle when algorithm done

2	

Step #1. Pseudo-Code of Algorithm (behavioral specification)

 Done :=0; // Initialization
 Ocount := 0; // Note #1
 Data := Input; // Note #2

 repeat // Loop Body
 if (Data_LSB = 1) {
 Ocount := Ocount + 1; } // increment 1’s count
 Data := Data >> 1; // shift right by 1
 until (Data = 0); // Note #3

 // Final Steps
 Output := Ocount; // Note #4

Done := 1;

Notes:
#1: Variable Ocount stores the current count of the # of 1’s.
#2: Variable Data stores the binary input number, read from the Input bus, which is iteratively
shifted to the right. After each shift, the least significant bit (LSB) of Data is examined and
removed. (Each right shift pushes a 0 bit into the MSB.)

#3: The loop body (“repeat … until”) allows an early exit from the loop: if the remainder of the
bits in the number Data is all 0’s, then exit à no further 1’s can be found.

#4: The result is placed a shared output bus, Output.

Alternative Pseudo-Code: An alternative pseudo-code algorithm could have the loop test (i.e.
checking for loop exit) at top instead of bottom, by replacing the “repeat-until” construct by a
“while loop” construct.

3	

Step #2. Write RTL Specification: “Generalized ASM” – MOORE VERSION

A generalized ASM is similar to the basic control ASM presented in Brown/Vranesic book (and
Katz book, on reserve), but the former models both datapath operations and control operations in
a single unified specification (see Gajski, ch. 8.3, for more details).

Let’s do a Moore version of a generalized ASM specification (i.e. no “output boxes”).

Note: In B/V vs. Gajski vs. Katz books, for ASM’s, some of the flowchart box names, notations
and symbols are slightly different. We will switch between the notations at times!

4	

Step #3. Allocate (= Select) Datapath Blocks for Operations

Sub-steps: Consider each of the variables in the generalized ASM of Step #2. For each
variable, (i) determine what functions are required, (ii) select an appropriate datapath block
from a library, and (iii) add any “hardwired” (i.e. fixed) inputs.

(a) Variable “Data”:

Functions required:

• “load input” (State S1)

• “shift-right-by-1” (State S4)

• implicit (most states): “hold”

Selected datapath block (from Gajski, ch. 7) = Shift Register with Parallel Load (SR w/ PL)

Comments: We only need 3 of the 4 operations: no change, load inputs, SHR-by-1 (not SHL-
by-1). However, we cannot “hardwire” any data or control inputs: we still need both S1 and S0
to select the 3 functions.

5	

(b) Variable “Ocount”:

Functions required:

• “load input” [constant 0] (State S1)

• “increment-by-1” (State S3)

• implicit (most states): “hold”

Selected datapath block (from Gajski, ch. 7) = Up/Down Counter with Parallel Load

Comments: We only need 3 of the 4 operations: no change, INC 1 (i.e. increment-by-1), load
inputs (not DEC 1 [decrement-by-1]). In this case, we can optimize the control signals based on
this domain-specific usage (see #1 below).

Note that the library component in Gajski ch. 7 lists a bit-width of 4 bits for data inputs/outputs.
We assume that the design is parametrizable, and comes in various sizes. The figure above lists
a typical 32-bit design, but actually we will select a customized 6-bit version for the final
implementation.

Optimization #1: Connect “D” control signal to 0 = “hardwired” input. We can still select the
3 operations using only the LOAD and E control signals.

Optimization #2: Connect all data inputs to the “hardwired” constant 0 value (i.e. 6 input bits).
This optimization is possible because the generalized ASM only lists a load of “0” into Ocount,
and no other value.

6	

(c) Variable “Output”:

This variable is given as a shared bus (see Gajski, ch. 5). We only want to place a value on (i.e.
“drive”) the bus when we are done.

The bus is connected to the system by a tri-state driver,which is normally disabled, and only
enabled when the algorithm is completed.

Functions required:

• “enable” (drive bus) (State S5)

• implicit (all other states): “disable”

Selected datapath block (from Gajski, ch. 5) = Tri-State Buffer

Comments: We could generate a separate OE control signal from the control unit, to control the
tri-state buffer. However, through later analysis of the control ASM, we can re-use an existing
wire, and avoid generating a separate OE signal:

Optimization #1: In the generalized ASM, note that the control output Done is asserted high
only in state S5, which is also the only state where the output bus is enabled. So, as an
optimization, we do not need a separate OE control signal in the final micro-architecture: we can
re-use Done (control output) to also serve as the control signal for the tri-state buffer.

7	

Comments: It looks like we are done, but we are not!: How is the status signal “Data ≠ 0”
produced?

Discussion: Focus on the “decision box” after state S4 in the generalized ASM. It indicates a
test of whether “Data ≠ 0”. This decision box represents a check of a result (= a status signal) of
some datapath operation.

The datapath operation is a “COMPARISON”; since we are checking its result, it must have
been computed somewhere, implicitly.

So: let us correct the generalized ASM, and explicitly add the COMPARISON datapath
operation (combinational) into state box S4. See below.

(d) “COMPARE” Operation:

Fixed generalized ASM:

Selected datapath block:

Now, let’s allocate a datapath block for this operation.

Possibility #1. We could pick a combinational MAGNITUDE COMPARATOR, which
compares 2 arbitrary numbers (see Gajski, ch. 5).

8	

Possibility #2. However, since we have a very simple fixed comparison – with 0! – we can
select much simpler hardware: a 32-input OR network. The output is 1 whenever the 32-bit
data input is not all-0’s. The input of the block is the 32-bit Data output. The output of the
block is the 1-bit status signal, “Data ≠ 0”.

	

