
1

Part II.

MINIMALIST:

HANDS-ON TUTORIAL

 (Release v2.0)

Steven M. Nowick
Columbia University

(nowick@cs.columbia.edu)

November 24, 2007

2

MINIMALIST: Funding Acknowledgments

v2.0 Release (NEW):

This work was supported by NSF ITR Award No. NSF-CCR-0086036.

v0.9 and v1.0-v1.2 Releases (1994-2001):

This work was supported by NSF Award Nos. NSF-CCR-99-88241,

NSF-MIP-95-01880 and NSF-MIP-9308810; a research grant from IBM

Corporation; and an Alfred P. Sloan Research Fellowship.

3

MINIMALIST v2.0: Download Site

Available as part of the “CaSCADE” async tool package

Download site:
http://www1.cs.columbia.edu/~nowick/asynctools

Current v2.0 support:
Linux only*

*(earlier Solaris versions not actively supported or updated)

Supporting material:
complete tutorial: in 2 parts [‘tutorial’ directory]

(i) Overview of MINIMALIST
(ii) Hands-On Tutorial (this file)

benchmark examples [‘examples’ directory]
other documentation: INSTALL, README, etc. [‘docs’ directory]

4

EXAMPLE #1: Martin Q-Element

AR

AA

BR

BA

From Caltech:
Alain Martin,
 “Programming in VLSI: from Communicationg Processes

to Delay-Insensitive Circuits”.
 Chapter in “Developments in Concurrency and Communication”,
 (ed. C.A.R. Hoare), Addison Wesley, UT Year of Programming Series,

pp. 1-64 (1990).

5

EXAMPLE #1: Martin Q-Element

AR

AA

BR

BA

Handshaking Protocol:

AR+

BR+ BA+ BR- BA-

AA+ AR- AA-

6

Example #1: Martin Q-Element

Handshaking Protocol: Burst-Mode Specification:
AR+

BR+

BA+

BR-

BA-

AA+ AR- AA-

output

input

7

Example #1: Martin Q-Element

Handshaking Protocol:

AR+

BR+

BA+

BR-

BA-

AA+ AR- AA-

Burst-Mode Specification:

0

1

2

3

AR+/BR+

BA+/BR-

BA-/AA+

AR-/AA-

input burst/
 output burstoutput

input

8

Example #1: Martin Q-Element

Step #0. Getting Started ...

– First, follow the set-up instructions in the “INSTALL” file

– Go to the “root directory” (“MINIMALIST”) of the unpacked tool (use ‘cd’)

– Create a new subdirectory there (or modify steps to create it elsewhere):
mkdir min-demo

– Go to “min-demo”, create an “ex1” subdirectory, and enter it:
cd min-demo
mkdir ex1
cd ex1

– Copy the Q-element BM specification file from “examples” into “ex1”:
cp ../../examples/martin-q-element/martin-q-element.bms .

Running MINIMALIST: the Simple Approach

9

Example #1: Martin Q-Element
Step #0. Getting Started (cont.) ...

– Next, to start up the “MINIMALIST” tool, type:
> MinShell

– MINIMALIST will respond with a new prompt:
minimalist>

– Type ‘help’ to see top-level help menu:
minimalist> help

You are now using “MinShell”. This environment allow you to do
synthesis runs, display specs + circuits, get online help, and even run
many standard Unix commands (cd, cp, mv, ls, pwd, …). In general,
you will want to activate “MinShell” at the start of a MINIMALIST
synthesis session (though most commands can also be run directly from
the Linux shell).

10

Example #1: Martin Q-Element

0

1

2

3

AR+/BR+

BA+/BR-

BA-/AA+
AR-/AA-

Step #1. Show BM Specification
 (a) Look at “BMS” text file:
 > more martin-q-element.bms

name martin_q_element

Input AR 0
Input BA 0

Output BR 0
Output AA 0

0 1 AR+ | BR+
1 2 BA+ | BR-
2 3 BA- | AA+
3 0 AR- | AA-

Running MINIMALIST: the Simple Approach

11

Example #1: Martin Q-Element

0

1

2

3

AR+/BR+

BA+/BR-

BA-/AA+
AR-/AA-

Step #1. Show BM Specification (cont.)

 (b) Graphic Display:

 > bms2ps martin-q-element.bms

Running MINIMALIST: the Simple Approach

12

Example #1: Martin Q-Element

Step #2. Synthesize BM Implementation: using a “script”

 > minimalist-basic martin-q-element.bms

Step #3. Display It:

 (a) Text: 2-Level Equations + Results Summary
 > [see displayed text output]

 (b) Plot NAND/NAND Circuit: [follow displayed instructions:]

 > plot_nand martin_q_element-L.sol

Running MINIMALIST: the Simple Approach

13

Example #1: Martin Q-Element

Step #3. Display It (cont.):

 (b) Result of “plot_nand”:

Running MINIMALIST: the Simple Approach

14

Example #1: Martin Q-Element

AR
BA BR

AA

Burst-Mode
Implementation:
 (Fund. Mode) BAAR

BA
AR

Y0

C-element now replaced by:
 - NOR2
 - NAND2

AR

BA

BR

AA

C

Martin
Implementation:
 (“QDI”)

… after manual decomposition,
to directly compare structures …

15

EXAMPLE #2A: Tangram Mixer

TANGRAM Mixer = “Call Element” (channel multiplexer)

AR
AA CR

CA
BR
BA

From Philips Research Lab: “TANGRAM” async tool flow ,
Kees van Berkel,
“VLSI Programming of Asynchronous Circuit for Low Power”.

 Chapter in “Asynchronous Digital Design,” (eds. G. Birtwistle and A. Davis),
 Springer-Verlag, Workshop in Computing Series,

pp. 152-210 (1995).

16

EXAMPLE #2A: Tangram Mixer

TANGRAM Mixer: Deriving a BM Specification ...

Protocol:
 assumes at most one requesting channel (A or B) active at any time!

AR
AA CR

CA
BR
BA 0

AR+/...BR+/...

17

EXAMPLE #2A: Tangram Mixer

TANGRAM Mixer: Deriving a BM Specification ...

COMPLETE THE BURST-MODE SPEC …
 THEN CREATE A .bms FILE …!
 ==> next slide

AR
AA CR

CA
BR
BA

0
AR+/CR+BR+/...

#1 #2

#3
#4 1

2

Protocol: for channel ‘A’ request

18

Example #2A: Tangram Mixer

[… waiting while you create your BM spec;

when done, go to next slide.]

19

EXAMPLE #2A: Tangram Mixer

AR
AA CR

CA
BR
BA

0
 AR+/CR+BR+/CR+#1 #2

#3
#4

1

2

Deriving a Burst-Mode Specification...:

3

 CA+/AA+

CA-/AA-

AR-/CR-

4

5

6

CA+/BA+

BR-/CR-

CA-/BA-

Channel A events #1-4...:
 first, rising transitions
 then, falling transitions
 -use same protocol for
 both A and B requests
 -assume at most one of A/B
 channels active at any time!
 (see choice in state #0)

20

Example #2A: Tangram Mixer

Step #0. Getting Started ...
 (a) go back into “min-demo” directory:
 > cd ..
 (b) create a new subdirectory:
 > mkdir ex2A
 (c) go to it:
 > cd ex2A
 (d) edit/create file for your BM spec:
 > emacs (or vi) my-tangram-mixer.bms

When done: compare your own BMS spec with …
 ../../examples/tangram-mixer/tangram-mixer.bms

Running MINIMALIST: the Simple Approach

21

Example #2A: Tangram Mixer

Step #2. Synthesize BM Implementation:

 > minimalist-basic my-tangram-mixer.bms

Step #3. Display It:

 (a) 2-Level Equations + Results Summary:
 > [see displayed output]

 (b) Plot NAND/NAND Circuit: [follow instructions]

 > plot_nand my_tangram_mixer-L.sol

Step #1. Show BM Specification:
 Graphic Display:
 > bms2ps my-tangram-mixer.bms

22

Example #2A: Tangram Mixer

Step #3. Display It (cont.):

 (b) Result of “plot_nand”:

Running MINIMALIST: the Simple Approach

23

Example #2A: Tangram Mixer

… first, get help on how to call the script:
 > help minimalist-area

Step #2. Synthesize BM Implementation:

 > minimalist-area my-tangram-mixer.bms multi-output fedback

Script is selected to run with:
- “multi-output” = shared logic

- “fedback” = try to use outputs as fedback state variables

Now, do another synthesis run, and compare:
 use an “area-oriented” script, with fedback outputs

24

Example #2A: Tangram Mixer

Step #3. Display It:

 (a) 2-Level Equations + Results Summary:
 > [see displayed output]

NOTE: now no state variables are needed.

 (b) Plot NAND/NAND Circuit: [follow instructions]

 > plot_nand my_tangram_mixer-FL.sol

25

Example #2A: Tangram Mixer

Step #3. Display It (cont.):

 (b) Result of “plot_nand”:

Running MINIMALIST: the Simple Approach

26

Example #2A: Tangram Mixer

AR
BR

CR

MINIMALIST
Implementation:
 (Fund. Mode)

AA
CA

BA
CA

AR
BR CR

AA CA

CA

C

CBA

Tangram
Implementation:
 (“QDI”)

… after manual decomposition,
to directly compare structures …

27

EXAMPLE #2B: Concurrent Mixer
Now… create a more concurrent BM Specification! ...

AR
AA

CR
CA

BR
BA

0
AR+/CR+BR+/CR+

#1 #2

#3
#4 1

2

Basic Protocol: events #1-4...

3

CA+/AA+

CA-/AA-

AR-/CR-

4

5

6

CA+/BA+

BR-/CR-

CA-/BA-

28

EXAMPLE #2B: Concurrent Mixer

Concurrent Protocol:

0 AR+/
 CR+

BR+/
CR+

1

2

3

CA+/
 AA+

CA-/
 AA-

AR-/
 CR-

4

5

6

CA+/BA+

BR-/CR-

CA-/
 BA-

Basic Protocol:

[…waiting while you
 create a more concurrent
 Burst-Mode specification
 for a mixer; when done,
 go to next slide.]

29

EXAMPLE #2B: Concurrent Mixer

0 AR+/
 CR+

BR+/
 CR+

1

2

 CA+/
 AA+ CR-

AR- CA-/
 AA-

3

4

 CA+/
 BA+ CR-

BR- CA-/
 BA-

0 AR+/
 CR+

BR+/
CR+

1

2

3

CA+/
 AA+

CA-/
 AA-

AR-/
 CR-

4

5

6

CA+/
 BA+

BR-/
 CR-

CA-/
 BA-

Basic Protocol: BM Spec Concurrent Protocol: BM Spec

30

EXAMPLE #2B: Concurrent Mixer

Step #0. Getting Started ...
 (a) go back into “min-demo” directory:
 > cd ..
 (b) create a new subdirectory:
 > mkdir ex2B
 (c) go to it:
 > cd ex2B
 (d) edit/create file for your BM spec:
 > emacs (or vi) my-concur-mixer.bms

When done: compare your own BMS spec with …
 ../../examples/concur-mixer/my-concur-mixer.bms

Running MINIMALIST: the Simple Approach

31

Example #2B: Concurrent Mixer

Step #2. Synthesize BM Implementation:

 > minimalist-basic my-concur-mixer.bms

Step #3. Display It:

 (a) 2-Level Equations + Results Summary:
 > [see displayed output]

 (b) Plot NAND/NAND Circuit: [follow instructions]

 > plot_nand my_concur_mixer-L.sol

Step #1. Show BM Specification
 (a) Graphic Display:
 > bms2ps my-concur-mixer.bms

32

EXAMPLE #2B: Concurrent Mixer

Step #3. Display It (cont.):

 (b) Result of “plot_nand”:

Running MINIMALIST: the Simple Approach

33

Example #2B: Concurrent Mixer

Step #2. Synthesize BM Implementation:

 > minimalist-area my-concur-mixer.bms multi-output fedback

Step #3. Display It:

 (a) 2-Level Equations + Results Summary:
 > [see displayed output]

 (b) Plot NAND/NAND Circuit: [follow instructions]

 > plot_nand my_concur_mixer-FL.sol

Now, do another synthesis run…:
 using an “area-oriented” script (and compare results)….

34

EXAMPLE #2B: Concurrent Mixer

Step #3. Display It (cont.):

 (b) Result of “plot_nand”:

Running MINIMALIST: the Simple Approach

35

EXAMPLE #2C: “While” Module
Now, you will design an entire BM specification from start-to-finish … !

ACTIVATE

DT

Problem: Design a Burst-Mode “While” (i.e., Loop) Controller

Simple Block Diagram (with channels):

#1#2

#3CHECK
loop

 condition

Basic Operation:
1. Activate “while” component
2. Check loop variable

- if 0, exit (go to #1)
- if 1, continue to #3

3. Execute loop body
 Repeat #2/#3 until loop var false

Balsa/Tangram Equivalent:

ACT

EXECUTE
loop body

DO

data channel

36

EXAMPLE #2C: “While”Module

Detailed Block Diagram:

CHECK
Loop

Condition
(DT)

DETAILED OPERATION:

1. Wait until module activated (ACT_req+)

2. Request loop variable (DT_req+)

 a. if loop variable = 0 (DT_d0+)
 - complete handshake on DT
 - complete handshake on ACT
 - return to #1 (wait for next activation)

 b. if loop variable = 1 (DT_d1+)

 - complete handshake on DT
 - execute loop body
 (i.e., do full handshake on DO)
 - go to #2 (start next loop test)

DO_req
DT_req

DT_d0
DT_d1

 dual-rail data
(0 or 1)

DO_ack

EXECUTE
Loop Body

(DO)

ACT_req ACT_ack

ACTIVATE (ACT)
passive
channel

active
channel

active
channel

37

EXAMPLE #2C: “While”Module

OPTIMIZATIONS (optional):

A. You may overlap these 2 handshakes
(i.e. make them concurrent)

B. You may overlap these 2 handshakes
(i.e. make them concurrent), as long as:

- DT is reset (and not changing)
during the active phase of DO

DETAILED OPERATION:

1. Wait until module activated (ACT_req+)

2. Request loop variable (DT_req+)

 a. if loop variable = 0 (DT_d0+)
 - complete handshake on DT
 - complete handshake on ACT
 - return to #1 (wait for next activation)

 b. if loop variable = 1 (DT_d1+)

 - complete handshake on DT
 - execute loop body
 (i.e., do full handshake on DO)
 - go to #2 (start next loop test)

Hint: for B., you may need to unroll the loop once to apply optimization

38

Example #3: “HP-IR” (HP Labs)
Inputs:
intitreq
itevent2ticks
ctrincack

Outputs:
iteventreq
ctrincreq

0

intitreq+/
 iteventreq+

1
2

3

4 5

From HP Labs/Stanford
 “Stetson” Project:
SEE figs. 10, 11, pp. 17-18:
A.Marshall, B.Coates, P.Siegel,
 “Designing an Asynchronous
 Communications Chip”,
 IEEE Design&Test of Computers,
 vol. 11:2, pp. 8-21 (1994)

Initial values: in
state #0, all inputs
& outputs are 0

intitreq-/
 iteventreq-

intitreq+/
 iteventreq+ itevent2ticks+/

 ctrincreq+
 iteventreq+

itevent2ticks-
intitreq-/
 ctrincreq-

itevent2ticks-
ctrincack+/
 ctrincreq-

ctrincack-/
 iteventreq+

intitreq+/
 iteventreq+

39

Example #3: HP-IR

Step #0. Getting Started ...
 (a) go back into “min-demo” directory:
 > cd ..
 (b) create a new subdirectory:
 > mkdir ex3
 (c) go to it:
 > cd ex3
 (d) copy the BM spec:
 > cp ../../examples/additional-benchmark-exs/hp-ir/hp-ir.bms .

Running MINIMALIST: the Simple Approach

Step #1. Show BM Specification
 (a) Graphic Display:
 > bms2ps hp-ir.bms

40

Example #3: HP-IR

Several Useful Scripts:

 Produce 1 -- or 4 -- Circuit Implementations For Each Script

 - fedback vs. non-fedback outputs

 - single-output vs. ‘output-disjoint’ vs. ‘multi-output’ (shared products)

 - different cost functions, ...

 (a) BASIC (critical race-free): “minimalist-crf”,“minimalist-crf-suite”

 > no optimal state assignment

 (b) SPEED: “minimalist-speed”, “minimalist-speed-suite”

 (c) AREA: “minimalist-area”, “minimalist-area-suite”

Running MINIMALIST: the Simple Approach

41

Example #3: HP-IR

Step #2. Synthesize BM Implementation: [try each!]
- Try “help <scriptname>” for details + parameters:

>minimalist-crf
>minimalist-crf-suite
>minimalist-speed
>minimalist-speed-suite
>minimalist-area

>minimalist-area-suite

Step #3. Display It:
 (a) 2-Level Equations + Results Summary:
 > [see displayed output]
 (b) Plot NAND/NAND Circuit:
 > [follow instructions]

Running MINIMALIST: the Simple Approach

42

Example #3: HP-IR

Step #4. Convert to Verilog Output: [optional]

> pla2verilog <.sol file name>

OR:
Step #4. Add Initialization Circuitry +

Convert to Verilog Output: [optional]

> pla2verilog -Init2 <.sol file name> -R hp-ir.bms

GETTING HELP:
…extensive on-line help available at all times; type:

> help

for a list of options. Type >help <cmd-name>

for detailed help on a command.

Running MINIMALIST: the Simple Approach

43

Example #3: HP-IR

Step #5. Verify circuit against spec: [optional]

> bms-verify hp-ir.bms <.sol file name>

Running MINIMALIST: the Simple Approach

44

Example #3: HP-IR

“Generalized C-Element” Implementations:

Produces “SET”/“RESET” functions for each output + next-state

- see part 1 of the tutorial for details…

2 Common Implementation Styles:

 (i) gC-element: “SET”=pull-down, “RESET”=pull-up

- gC output: has inverter +“keeper” (to hold state)

 (ii) using C-element (2-input):

- implement “SET” and “RESET” as separate logic networks

- each network is 2-level, feeds into 2-input C-element

- “RESET”: must invert, before feeding into C-element

 (d) GC SCRIPTS: “minimalist-gc”, “minimalist-gc-suite”

45

Example #3: HP-IR

Step #2. Synthesize BM Implementation: [try each!]
- Try “help <scriptname>” for details + parameters:

> minimalist-gc

> minimalist-gc-suite

Step #3. Display It:
 (a) 2-Level Equations + Results Summary:
 > [see displayed output]

 (b) Plot NAND/NAND Circuit:
 > [follow instructions]

NOTE: (b) currently only displays separate SET and
RESET functions (not GC elements!)

Running MINIMALIST: the Simple Approach

46

Example #4: RF-Control

From HP Labs/Stanford
 “Stetson” Project
A.Marshall, B.Coates, P.Siegel,
 “Designing an Asynchronous
 Communications Chip”,
 IEEE Design&Test of Computers,
 vol. 11:2, pp. 8-21 (1994)

Running MINIMALIST:
Custom Synthesis Using the MINIMALIST “Shell”

47

Example #4: RF-Control

Step #0. Getting Started ...
 (a) go back into “min-demo” directory:
 > cd ..

 (b) create a new subdirectory:
 > mkdir ex4

 (c) go to it:
 > cd ex4

 (d) copy the BM spec:
 > cp ../../examples/additional-benchmark-exs/hp-ir/rf-control.bms .

Step #1. Show BM Specification
 (a) Graphic Display:
 > bms2ps rf-control.bms

Running MINIMALIST: Using the MINIMALIST “Shell”

48

Example #4: RF-Control

Step #1. Show BM Specification

49

Example #4: RF-Control
Step #1. Show BM Specification
 (a) Look at “BMS” text file:
 > more rf-control.bms

name RF_control
Input RFFrameReq 0
Input SOFEventOK 0
Input EOFEventOK 0
Input CtrEoTSAck 0
Input SCEotSAck 0
Input HIFCommitAck 0

Output ControlResetAck 1
Output RFFrameAck 0
Output IntSDReq 0
Output SCEoTSReq 0
Output HIFCommitReq 0

 [… continued on right
 column ==>]

0 1 RFFrameReq+ | IntSDReq+ ControlResetAck-
1 2 SOFEventOK+ | IntSDReq-
2 3 SOFEventOK- | IntSDReq+
3 4 EOFEventOK+ | HIFCommitReq+ IntSDReq-
4 5 EOFEventOK- HIFCommitAck+ |

HIFCommitReq+ SCEoTSReq+
5 6 HIFCommitAck- SCEoTSAck+ | SCEoTSReq+
6 7 SCEoTSAck- | RFFrameAck+
7 8 RFFrameReq- | RFFrameAck-
8 1 RFFrameReq+ | IntSDReq+
3 9 CtrEoTSAck+ | IntSDReq-
9 10 CtrEoTSAck- | SCEoTSReq+
10 11 SCEoTSAck+ | SCEoTSReq-
11 3 SCEoTSAck- | IntSDReq+

50

Example #4: RF-Control

Step #2. Customize Synthesis of BM Implementation: basic run

 (… still in “MinShell” …: type “help” for each command below)

 > read-spec rf-control.bms

 > help …
 ….

 > min-states #basic state minimization

 > help assign-states

 > assign-states #basic (crit race-free) state assignment (not optimal)

 > help min-logic

 > min-logic #basic logic minimization (using default parameters)

Running MINIMALIST: Using the MINIMALIST “Shell”

51

Example #4: RF-Control

Step #3. Display It:

 (a) 2-Level Equations + Results Summary:
 > [see displayed output]

 (b) Plot NAND/NAND Circuit:
 > [follow instructions]

Running MINIMALIST: Using the MINIMALIST “Shell”

52

Example #4: RF-Control

Step #3. Display It (cont.):

 (b) Result of “plot_nand”:

Running MINIMALIST: Using the MINIMALIST “Shell”

53

Example #4: RF-Control

Step #2’. A Different Customized Run: targeting speed
- use optimal state assignment (targeted to primary outputs)
- no fedback outputs
- no logic sharing (-s)
- target critical I-to-O paths (-P)

 > read-spec rf-control.bms
 > help …
 > min-states #state minimization
 > help assign-states
 > assign-states -O -P -S -s #optimal state assignment (-O)

 #target output logic only (-S)
 #single-output logic (-s)
 #target critical I/O paths (-P)

 > help min-logic
 > min-logic -P -s # better logic minimization:

 #single-output logic (-s)
 #target critical I/O paths (-P)

Running MINIMALIST: Using the MINIMALIST “Shell”

54

Example #4: RF-Control

Step #3’. Display It (cont.):

 (b) Result of “plot_nand”:

Running MINIMALIST: Using the MINIMALIST “Shell”

Obtains faster logic
 for the primary outputs…

55

Example #4: RF-Control

Step #2’’. Yet Another Custom Run: targeting area
 - use optimal state assignment (targeted to both outputs and next-state)

- fedback outputs (to eliminate some explicit state variables)
- logic sharing = multi-output (no -d or -s)
- target total # of literals (-L)

 > read-spec rf-control.bms
 > help ...
 > min-states -F #state minimization, w/fedback

#outputs as state vars (-F)
 > help assign-states
 > assign-states -F -L -O #optimal state assignment (-O)

 #w/fedback outputs (-F)
 #shared products (no -d or -s)
 # (i.e. “multi-output”)
 #target total literal count (-L)

 > help min-logic
 > min-logic -F -L #w/fedback outputs (-F)

 #shared products (no -d or -s)
 #target total literal count (-L)

Running MINIMALIST: Using the MINIMALIST “Shell”

56

Example #4: RF-Control

Step #3’. Display It (cont.):

 (b) Result of “plot_nand”:

Running MINIMALIST: Using the MINIMALIST “Shell”

Obtains smaller total area…

57

Example #5: Handling Large Examples
(“P1 Controller”)

From HP Labs/Stanford “Stetson”Project
A.Marshall, B.Coates, P.Siegel,
 “Designing an Asynchronous Communications Chip”,
 IEEE Design&Test of Computers, vol. 11:2, pp. 8-21 (1994)

Step #0. Getting Started ...
 (a) go back into “min-demo” directory:
 > cd ..
 (b) create a new subdirectory:
 > mkdir ex3
 (c) go to it:
 > cd ex3
 (d) copy the BM spec:
 > cp ../../examples/additional-benchmark-exs/stetson/p1.bms .

58

Example #5: Handling Large Examples
(“P1 Controller”)

Step #1. Show BM Specification
 (a) Look at “BMS” text file:
 > more p1.bms

Summary: a large async controller
 13 inputs
 14 outputs
 33 (burst-mode) states

Step #1. Show BM Specification (cont.)
 (b) Graphic Display:
 > bms2ps p1.bms

59

Example #5: Handling Large Examples
(“P1 Controller”)

Synthesis Strategies for Faster Runtime
 (i) avoid using “optimal” state assignment
 (… instead, just use simple “non-optimal” critical race-free assignment)

 (ii) try to avoid multi-output shared logic (expensive to run)
 (… instead, use “single-output” [-s] or “output-disjoint [-d]”, which

 are used in speed-oriented options.)

 (iii) possibly, try using fedback outputs:
 (… potential benefit: fewer states;

potential drawback (sometimes): more total inputs to controller …)

60

Example #5: Handling Large Examples
(“P1 Controller”)

Step #2. Synthesize BM Implementation:
>minimalist-crf p1.bms speed fedback

Step #3. Display It:

 (a) 2-Level Equations + Results Summary:

 > [see displayed output]

 (b) Plot NAND/NAND Circuit:
 > [follow instructions]

Initial Synthesis Run: Using SCRIPTS

61

Example #5: Handling Large Examples
(“P1 Controller”)

An Alternative Run: Using the MINIMALIST “Shell”

Step #2. Synthesize BM Implementation:
… one of many possible custom runs -- can try others too:

> read-spec p1.bms

> help …
 ….
> min-states -F # state minimization: with fedback outputs
> help assign-states
> assign-states -F -C #non-optimal state assignment (-C);

 # assumes fedback outputs (-F)
> help min-logic
> min-logic -F -L -d #logic minimization: for literal optzn (-L);

 # try output-disjoint logic (-d) [partial sharing];
 # assumes fedback outputs (-F)

62

Example #5: Handling Large Examples
(“P1 Controller”)

An Alternative Run: Using the MINIMALIST “Shell”

Step #3. Display It:

 (a) 2-Level Equations + Results Summary:
 > [see displayed output]

 (c) Plot NAND/NAND Circuit:
 > [follow instructions]

… Compare the 2 different implementations:
see Step #3(a) for statistics

63

Example #6: “PE-SEND-IFC” (HP Labs)
Inputs:
req-send
treq
rd-iq
adbld-out
ack-pkt

Outputs:
tack
peack
adbld

0

1

2

7

3

4

5

6

8

9

10

req-send+ treq+ rd-iq+/
adbld+

adbld-out+/
peack+

rd-iq-/
peack- adbld-
 tack+

adbld-out- treq-
rd-id+/ adbld+

adbld-out+/
peack+

rd-iq-/ peack-
adbld- tack-

adbld-out- treq+ ack-pkt+/
 peack+ tack+

ack-pkt- treq-/
peack- tack-

treq-/
tack-

treq+/
tack+

ack-pkt+/
peack- tack-

adbld-out-
treq- ack-pkt+/

peack+

req-send-/
--

 adbld-out-
 treq+ rd-iq+/
 adbld+

From HP Labs
 “Mayfly” Project:
B.Coates, A.Davis, K.Stevens,
 “The Post Office
 Experience: Designing a
 Large Asynchronous Chip”,
 INTEGRATION: the
 VLSI Journal, vol. 15:3,
 pp. 341-66 (Oct. 1993)

64

Example #7: An Asynchronous FIFO

Top-Level Block Diagram:

Get
FIFO

Put

From Columbia University:
Tiberiu Chelcea and S. Nowick,
 “Low-Latency Asynchronous FIFO’s Using Token Rings”,
 IEEE Async-00 Symposium (Int. Sympos. on Advanced Research

in Asynchronous Circuits & Systems), Eilat, Israel (April 2000)

65

Example #7: An Async FIFO

One FIFO Cell:

FIFO: Token Ring Architecture

Cell Cell Cell Cell

St
ar

te
r

Put

Get

Cell

Put

RightLeft

Get

66

Example #7: An Async FIFO

FIFO Cell: Decomposition

Reg Get
Controller

Put
Controller

Left
Controller Opt Token Distributor (OPT)

Ptok

Right

Gtok

GetPut

PassLeft

67

Example #7:
Async FIFO

BM Spec:
“Opt Token Distributor”

 (OPT)

right_ack/
right_req-

right_ack-/
ptok_r+

ptok_a+/
ptok_r-

ptok_a-/
pass_r+

pass_a+/
pass_r-

pass_a-/ right_req+

pass_a-/ right_req+

pass_a+/
pass_r-

gtok_a-/
pass_r+

gtok_a+/
gtok_r-

right_ack-/
gtok_r+

right_ack+/
right_req-

68

Frequently-Asked Questions (FAQ)/
Clarifications on Features, etc.

1. MINIMALIST v2.0: installation and setup

Detailed instructions on installation can be found in the “INSTALL” and

“README” files included with the release. This “INSTALL” file guides you

through setting up your Linux “PATH” (and two other Linux variables,

“MINIMALIST” and “LD_LIBRARY_PATH”).

It also covers external tools required by MINIMALIST: ghostview, TCL

interpreter, Perl interpreter, and dot. You need to have these external tools set

up to use all the features of MINIMALIST. See instructions on how to download

them, if you do not currently have them.

It also indicates the expected Linux environments on which MINIMALIST can be
run.

If you still have problems with installation and setup, contact:
Steven Nowick (nowick@cs.columbia.edu). We will try to help.

69

Frequently-Asked Questions (FAQ)/
Clarifications on Features, etc.

2. Accessing “bm_decomp” and “MLO” tools

The MINIMALIST v2.0 release also includes two useful additional tools:
(i) “bm_decomp”: a front-end pre-processor, which decomposes large BM
specifications into several smaller interacting BM controllers; and
(ii) “MLO” (multi-level optimizer): a back-end post-processor, which converts
two-level logic output to multi-level (Verilog format).

Neither tool is required: you can run the core MINIMALIST v2.0 package

without using either (i) or (ii). However, both tools are useful, and each

operates modularly as a “standalone” package (called from Linux shell).

To download these two tools, click on the MINIMALIST package at the
CaSCADE web site (http://www1.cs.columbia.edu/~nowick/asynctools) and
follow directions. Each of the tools comes with its own tutorial, examples and
installation instructions.

70

Frequently-Asked Questions (FAQ)/
Clarifications on Features, etc.

3. Problems with graphical display:

MINIMALIST includes two tools for graphical display:

(i) “bms2ps” to display BM specifications (converts to Postscript); and

(ii) “plot_nand” to display BM implementations (converts to Postscript).

 If you do not get a popup display window:

For example, if you are running MINIMALIST remotely (e.g. ssh) from a PC or
Mac, consult details of your computer setup to enable it. If you still cannot get
a popup window:

- use MINIMALIST to create Postscript (.ps) files for BM spec + implementation

==> both “bms2ps” and “plot_nand” always create .ps files
(cleaner: to avoid error msgs., use “pla2nand”)

- convert these .ps files to .pdf, then “ftp” them to your PC/Mac for display

71

Frequently-Asked Questions (FAQ)/
Clarifications on Features, etc.

3. Problems with graphical display (cont.):

If you do get a popup window, but no graphics appear:

You may have a font problem in your environment. The tools bms2ps,

plot_nand and pla2nand all use Times and Helvetica Postscript fonts. In order

to properly display the Postscript files produced by these tools, these fonts need

to be installed on the system.

72

Frequently-Asked Questions (FAQ)/
Clarifications on Features, etc.

4. Reporting results: does the tool sometimes “miscount”?

When you run MINIMALIST on a BM specification, results for the two-level

logic implementation are displayed: reporting “# products”, “# literals”, etc.

These results sometimes look wrong (it sometimes over-counts prods/lits)!

Explanation:

Consider an example: Z = A + BC.

The tool assumes a ‘sum-of-products’ (i.e. AND-OR) structure.

If a “product” (i.e. ‘A’) is just a wire (i.e. no AND gate needed) , the tool still
counts it as one product (i.e. “AND1” gate).
It also counts one literal for this ‘A’ gate input, and one additional literal for
the output of this “AND1” gate (i.e. as an input to the OR gate).

Summary: Minimalist sometimes reports worse results than actually obtained.

73

Frequently-Asked Questions (FAQ)/
Clarifications on Features, etc.

4. How well is “GC” (generalized C-element) mode supported?

MINIMALIST includes both scripts (minimalist-gc, minimalist-gc-suite) and

command-line options (-G) to target generalized C-element implementations.

(a) extra (i.e. unused) state variables may be generated:

Sometimes the tool produces extra state variables in GC mode, which are not

needed (I.e. feed into no logic). These can be discarded.

[The reason is that MINIMALIST currently uses the same ‘state-min’ step for GC as for

non-GC runs, this step could be better optimized for GC in the future.]

74

Frequently-Asked Questions (FAQ)/
Clarifications on Features, etc.

4. How well is “GC” (generalized C-element) mode supported? (cont.)

(b) some features do not work with GC mode:

Several MINIMALIST commands do not support GC, or only indirectly:

- bms-verify: only works for 2-level circuits

- pla2verilog: currently no Verilog output for GC mode (for single GC cell)

(but user can call pla2verilog to turn separate ‘set’ and ‘reset’ networks into Verilog)

- plot_nand, pla2nand: can only display separate ‘set’ or ‘reset’ networks, not

an integrated single GC cell

75

Frequently-Asked Questions (FAQ)/
Clarifications on Features, etc.

5. Adding initialization circuitry: two-level vs. multi-level logic

MINIMALIST provides the “pla2verilog” option to (a) convert a two-level logic

implementation to Verilog (.v file), and (b) insert initialization circuitry.

MINIMALIST also provides the “MLO” tool, to convert a two-level logic

implementation to multi-level, and output Verilog (.v file).

A current restriction (v2.0) : “MLO” cannot be run after “pla2verilog”.

(“MLO” reads.pla/.sol files, not .v files.) So, if you want to insert initialization

circuitry (“pla2verilog”), you must do so on the two-level circuit and then must

skip multi-level optimization (“MLO”).

76

Frequently-Asked Questions (FAQ)/
Clarifications on Features, etc.

6. Using scripts: does the ‘area script’ always produce the best area, etc.?

Not necessarily.

The ‘minimalist-area’/’minimalist-area-suite’ scripts are designed to tend to get

better area (as observed on a number of examples). However, there is no

guarantee! Sometimes, speed scripts will obtain better area than area scripts.

Similarly, the ‘minimalist-speed’/’minimalist-speed-suite’ scripts are designed to

tend to get faster circuit speeds (as observed on a number of examples).

However, sometimes an area’script will obtain better speed than speed scripts.

If you are concerned about finding the best possible implementation, try running

several scripts and compare results. Also, try various custom runs in MinShell.

77

Frequently-Asked Questions (FAQ)/
Clarifications on Features, etc.

7. When running custom synthesis (in MinShell), any dangers?

Avoiding common errors: “no fedback output” vs. “fedback output”:

There are three key BM synthesis steps (in order):
(i) ‘min-states’, (ii) ‘assign-states’, and (iii) ‘min-logic’.

Whether you are targeting a machine style “with fedback output” or “without

fedback output”, you must consistently set the ‘-F’ flag for all three steps.

To synthesize an implementation with “fedback output”:
- all three steps must be called with the ‘-F’ flag

To synthesize an implementation with “no fedback output”:

- all three steps must be called without the ‘-F’ flag

NOTE: if you use the ‘-F’ flag inconsistently in a run (i.e. use for some steps, not
for others), the synthesis tool will produce an incorrect circuit!

78

Frequently-Asked Questions (FAQ)/
Clarifications on Features, etc.

8. Synthesizing larger controllers: how to reduce runtime of the tool?

See earlier slides in this tutorial on handling large examples, for some strategies

to reduce the tool’s runtime.

Another alternative is to decompose the original burst-mode specification, using

the “bm_decomp” tool. See download site:

http://www1.cs.columbia.edu/~nowick/asynctools

79

Frequently-Asked Questions (FAQ)/
Clarifications on Features, etc.

9. How to get further help on various commands?

Type ‘help’ to see a list of Minimalist commands. Type ‘help’ on an individual

command to get more details on usage, special modes, restrictions, and

parameters.

80

Frequently-Asked Questions (FAQ)/
Clarifications on Features, etc.

10. How to find additional reading on MINIMALIST, burst-mode, etc.?

See the “README” file, which gives pointers to several readings. These in turn
include many citations and leads on technical aspects of the tool (e.g. algorithms).

They also include pointers to some design case studies using burst-mode

controllers (using earlier burst-mode synthesis tools), including:

- an experimental infrared communications chip (w/ HP Labs):
A. Marshall, B. Coates and P. Siegel,

 “Designing an Asynchronous Communications Chip”,

IEEE Design & Test of Computers, vol. 11:2, pp. 8-21 (1994).

- a cache controller:
S.M. Nowick, M.E. Dean, D.L. Dill and M. Horowitz,

“The Design of a High-Performance Cache Controller: a Case Study in Asynchronous Synthesis.'’

Integration: the VLSI Journal, vol. 15:3, pp. 241-262 (Oct. 1993).

- DRAM/SCSI controllers:
S.M. Nowick, K.Y. Yun and D.L. Dill,
“Practical Asynchronous Controller Design.” Proc. of IEEE Int. Conf. on Computer Design,

pp. 341-345 (Oct. 1992).

