An Introduction to
Burst-Mode Controllers

and the MINIMALIST CAD Package
CEEEERZA),

Steven M. Nowick
Columbia University
(nowick@cs.columbia.edu)

November 24, 2007

MINIMALIST: Funding Acknowledgments

v2.0 Release (NEW):
This work was supported by NSF ITR Award No. NSF-CCR-0086036.

v0.9 and v1.0-v1.2 Releases (1994-2001):

This work was supported by NSF Award Nos. NSF-CCR-99-88241,
NSF-MIP-95-01880 and NSF-MIP-9308810; a research grant from IBM

Corporation; and an Alfred P. Sloan Research Fellowship.

The MINIMALIST v2.0 Package: Introduction

MINIMALIST: developed at Columbia University [1994-]

e extensible “burst-mode” synthesis package
e integrates synthesis, testability and verification tools

Synthesis flow for individual asynchronous controllers:

e Includes several optimization tools:

— State Minimization
— CHASM: optimal state assignment
— 2-Level Hazard-Free Logic Minimization: exact/heuristic

— Multi-level logic optimizer tool ("MLO"): includes performance-oriented decomposition
— Decomposing large specifications (“bm_decomp”)

e Other practical features:
— Automated scripts, manual command-line interface

— Verilog back-end + auto insertion of initialization circuitry ("pla2verilog”)
— Top-to-bottom verifier (“bms-verify”)
— "GC-Min": mapping to generalized C-elements
Graphical display ("bms2ps”: specifications; “pla2nand”: implementations)

The MINIMALIST v2.0 Package: Overview
MINIMALIST Tool Flow: J e —

("bms2ps”) SPEC

= futur
uiure (implemented,

not
yet included)

additions *

STATE

COMBINATIONAL/ MINIMIZATION

SEQUENTIAL VERIFIER (“min-states”) SYNI;I'OI-E_SIS-

(checks for hazards, TESTABILITY

et), OPTIMAL STATE ASSIGNMENT (2-level,
(“"bms-verify”) (“assign-states” [CHASM]) multi-level)

v

DISPLAY 2-LEVEL IMPLTN. g 2-LEVEL HAZARD-FREE LOGIC MINIMIZATION:

(“plot_nand”) 3 optimal algorithms [exact/heuristic]
/ ("min-logic” [hfmin, espresso-HF, IMPYMIN])

VERILOG BACK-END + +
INSERT INITIZALIZATION MULTI-LEVEL HAZARD-FREE LOGIC OPTIMIZATION:
CIRCUITRY Supports 3 features:

("PLA2Verilog™: performance-oriented optimization, gate fan-in limits, negative logic
) (“MLO” tool:)

Generalized C-Element BASED MAPPING
TIMING ANALYSIS ("gC-Min")

The MINIMALIST v2.0 Package:
New Features (highlights)

Multi-Level Optimizer (MLO) Tool: Comprehensive Package

Stand-alone back-end translator, from two-level (.sol/.pla) to multi-level (.v)

Key features: can “mix-and-match”
- performance-oriented multi-level logic decomposition:
reduces critical input-to-output paths (auto/manual modes)
gate fan-in restriction:
user can specify fan-in limits to gates

target negative logic gates:
map only to negative logic gates

Verilog translator: produces multi-level Verilog output (.v file)

Runs directly in Linux shell (outside of Minimalist)

Current restriction:
— cannot run after PLA2Verilog (so cannot include initialization circuitry in multi-level output)

‘ See separate “"MLO" package:
tutorial, examples, documentation, etc.

The MINIMALIST v2.0 Package:
New Features (highlights, cont.)

bm_decomp: decomposition of Burst-Mode specifications

e Stand-alone front-end translator
- Input: a single (monolothic) BM specification (.bms file)

= Output:
- a set of several interacting BM specifications, implementing the same behavior
- some auxiliary hardware indicated (must be manually inserted):
input latches + latch controllers, output generators

Potential benefits: especially for large controllers
- Runtime: (often) much faster to synthesize smaller decomposed controllers

— Low Power: (potentially) only one smaller controller active at a time

Timing Assumptions: smaller next-state logic ==> narrower fundamental mode window

Runs directly in Linux shell (outside of Minimalist)

‘ See separate "bm_decomp” package:
tutorial, examples, documentation, etc.

The MINIMALIST v2.0 Package:
New Features (highlights, cont.)

PLA2Verilog: comprehensive Verilog back-end

e Verilog back-end translator:
- translates Minimalist output (2-level circuit [PLA file]) to Verilog

e Automatic insertion of initialization circuitry (hazard-free)

bms-verify: top-to-bottom verification tool

e Compares original BM specification directly against final 2-level implementation
= Sequential + combinational verification:
- exhaustively simulates entire BM spec, and checks against 2-level logic impltn.
— Checks for: functional correctness, hazard-freedom

bms2ps: graphical display of BM specifications

Translates BM specification (.bms file) to Postscript graphics (.ps file)
Runs directly in Linux shell (outside of Minimalist)
Much improved quality over (non-supported) earlier “plot_qt” tool

MINIMALIST Developers

Principal Architects: [1994-present]

— Robert M. Fuhrer: system designer & primary implementer
— Steven M. Nowick: project leader
— Tiberiu Chelcea: coordinating v2.0 updates

Documentation:

—Overview Chapter (includes a good readable introduction to Minimalist,
see section on “burst-mode controllers”):

Luciano Lavagno and Steven M. Nowick,
“Asynchronous Control Circuits”, chapter 10 of

(editors S. Hassoun and T. Sasao),
Kluwer Academic Publishers, Boston, MA

—Book: Robert M. Fuhrer and Steven M. Nowick,

Kluwer Academic Publishers,
Boston, MA (2001), ISBN 0-7923-7425-8.

—PhD Thesis: Robert M. Fuhrer,
Columbia University, Dept. of Computer Science, May 1999.

Other Contributors

Current and Former PhD Students:

— Melinda Agyekum:

“bm_decomp” Tool [v2.0 feature]: decomposes BM specifications.
A standalone front-end tool, which takes a single BM
controller specification and decomposes it into
set of equivalent interacting BM specifications.
These interacting controllers can then be synthesized
using Minimalist (some added auxiliary hardware required).

[see separate tutorial + docs]

— Tiberiu Chelcea:

“pla2nand”: two-level circuit display

“pla2verilog” [v2.0 feature]: Verilog backend for 2-level logic,
also performs automatic insertion of initialization logic

— Michael Theobald: advanced 2-level minimization: espresso-HF, IMPYMIN

— Luis Plana: state minimization w/fedback outputs (an initial contributor)

Other Contributors

Current MS Students:

—Walter Dearing:
Multi-Level Optimizer ("MLO") Tool [v2.0 feature]:

MLO is a standalone back-end tool which takes a 2-level circuit

produced by Minimalist and maps to multi-level Verilog output.

Features: supports ...
(i) performance-driven multi-level logic optimization (*CEQ"),
(ii) gate fan-in limitations, and
(iii) negative logic gates

[see separate tutorial + docs]

Other Contributors

Former Undergraduates:

— Charles O’'Donnell:

“bms-verify” [v2.0 feature]: complete BM spec-to-implementation
verification check

“minxbm”: XBM support (completed, in preparation for future release)

— Alexander Shapiro: gC-min, gC-CHASM, phase optimization

— Tao Wu: espresso-HF (contributor)

MINIMALIST: Download Site

Minimalist is part of the "CaSCADE" Release of Async CAD tools

Accessible on the Web from:
http://www1.cs.columbia.edu/~nowick/asyncdownload

Currently, one version: Linux*

*NOTE: the v2.0 Minimalist release only supports Linux,
earlier versions for SPARC Solaris have not been
updated and are not fully supported

Includes:

complete tutorial (text + PDF slides)
benchmark examples
other documentation

Outline

PART I: Technical Overview

The MINIMALIST CAD Package: Introduction
Optimization Algorithms

e 2-Level Hazard-Free Logic Minimization
e Optimal State Assignment
New MINIMALIST Features
User-Selectable Modes

Results, Evaluation and Conclusions

PART II: Tutorial

Design Examples + Hands-On Tutorial

The MINIMALIST Package:
Earlier Features (highlights)

Other Features:

m Graphical Interfaces:
o displays:
— state-machine specification
— circuit implementation
e menu-based input: (... currently under development)

Extensible Package:

easily accommodates new “plug-in” tools
“MinShell”; interactive user shell

provides: on-line help, command-completion, ...
class library for burst-mode manipulation

C++ implementation, ~45,000 lines of code

The MINIMALIST Package:
Earlier Features (highlights, cont.)

Unlike most other asynchronous packages, MINIMALIST offers designers flexibility:

m Fully-automated synthesis using scripts:

e Target speed, area, runtime
— e.g. ‘minimalist-speed-suite’, ‘minimalist-area’, etc.

e Options: produces one vs. multiple implementations (user selects best one)

m Advanced operation: custom synthesis with command-line interface (“MinShell”):

* Allows advanced users to custom-select each synthesis step
— targeted machine style (fedback outputs, no fedback outputs)
— logic implementation style (how much sharing of logic between outputs)
— cost functions
— varying encoding lengths (in state assignment)
output “phase optimization” (inverted or non-inverted outputs)
alternative heuristics for steps:
skipping state minimization step, CRF-only state encoding (avoid optimal algorithms), etc.

The MINIMALIST Package

Includes some highly-optimized existing (non-asynchronous!) CAD tools to
solve compute-intensive sub-problems:
e dichot: exact dichotomy solver [Saldanha 91]

e NOVA: simulated annealing -heuristic dichotomy solver
[Villa 89]

e espresso (Berkeley SIS): prime implicant generation
e Scherzo: unate/binate covering [Coudert 94]

“"Burst-Mode” Controllers

Synthesis style for individual asynchronous FSM’s:

e Mealy-type
o allows:
— multiple-input changes
— concurrent behavior
e target technology: normal synchronous cell libraries

e optimization algorithms: comprehensive set

m Brief History:...
e Based on informal approach at HP Labs:
— Davis, Coates, Stevens [1986-, and earlier]

e Formalized and constrained at Stanford: Nowick/Dill [91]
— Finalize formal Burst-Mode specifications

— Nowick/Dill first to develop a correct synthesis method

Burst-Mode: Implementation Style

"Huffman Machine™: async machine, no explicit latches

outputs

Hazard-Free
Combinational
Network

(several
bits)

Burst-Mode: Implementation Style

Burst-Mode Behavior: inputs in a user-specified input
burst’arrive, in any order (glitch-free)

inputs

B
C e

outputs

Hazard-Free
Combinational
Network

(several
bits)

Burst-Mode: Implementation Style

Burst-Mode Behavior: inputs in a user-specified ‘input
burst’arrive, in any order

outputs

Hazard-Free
Combinational
Network

(several
bits)

Burst-Mode: Implementation Style

Burst-Mode Behavior: once 'input burst’is complete,
machine generates a (glitch-free) ‘output burst’ ...

input burst

outputs

— X

Hazard-Free
Combinational
Network state output burst

(several
bits)

Burst-Mode: Implementation Style

... and (sometimes!) a concurrent (and glitch-free)
state change to a new state....

outputs

f— X

Hazard-Free
Combinational
Network

(several
bits)

Burst-Mode Specifications

How to specify "burst-mode” behavior?:
current state — |

input burst/
output burst

next state

| outputs

B

Hazard-Free
Combinational
input burst Network state output burst

(several
bits)

Burst-Mode Specifications

Example: Burst-Mode (BM) Specification:

- Inputs in specified At C?
arrive in any order and at any tlme

- After all inputs arrive, generate o

Z+
Note: C+,>\ N

-input bursts: must be non-empty Y+
(at least 1 input per burst)

-output bursts: may be empty
(0 or more outputs per burst)

Burst-Mode Specifications

“Burst-Mode” (BM) Specs: 2 Basic Requirements

— requirements introduced by Nowick/Dill [ICCD91,ICCAD'91]
— ... guarantee hazard-free synthesis!

1. "maximal set property”: in each specification state,
no input burst can be a subset of any other input burst

2. "unigue entry point”: each specification state must be
entered at a 'single point’

Burst-Mode Specifications

1. "maximal set property”: in each specification state,
no input burst can be a subset of another input burst

A+ C+/)
Y+ Z-

CePe

{A+} C {A+C+} legal

...meaning is ambiguous: what to do when only input A+ arrives?:
- wait for C+? or output Y+ Z-?7?

Burst-Mode Specifications

2. "unigue entry point”: each specification state must be
entered at a ‘single point’ (guarantees hazard-free synthesis)

Entering State 4:

- from State 1: ABCD =

- from State 2: ABCD =

2 different input/output values
when entering state 4

Solution = split state 4

Burst-Mode Specifications

2. "uniqgue entry point” (cont.):

Another Example:

state 4 -- entered with
the same input/output values
on both ‘incoming arcs’

Entering State 4:

- from State 3: ABC =
- from State 2: ABC =

... SO, “unique entry point”
property is satisfied.

/

y

NG
Q.

Burst-Mode Specifications

Final observation:
Burst-Mode specs must explicitly
indicate all “"expected events”

Missing input burst:
means “'cannot occur”!

EXAMPLE: in State #0...

- this specification indicates
(implicitly) that input burst B+C+
should never occur
... since this event is not specified!

Burst-Mode Specifications

“Extended Burst-Mode” (XBM): @ s Rin]
[Yun/Dill ICCAD-93/95] ok-Rin/[| FRoutt

@ FAIn+ Rin*/

l FRout-

Additional Features:

1. “directed don't cares” (Rin*): Rin-/ | FAKE %i/
allow concurrent inputs & outputs Aout- @ u

allow “sampling” of level signals Rin-/ \
Aout- FRout+ Rin+ FAin-/

Handles glitchy inputs, Aout+
mixed sync/async inputs, etc.

(... not yet supported by MINIMALIST,
expected in future releases)

One-Sided Timing Requirements

#1. Fedback State Change: must not arrive at inputs until
previous input burst has been fully processed ...

—add: 1-sided delay to feedback path
—usually negligible delay: often no extra delay needed

inputs outputs

b X
B
Hazard-Free
Combinational

Network

One-Sided Timing Requirements (cont.)

#2. Next Input Burst: must not arrive until machine has
stabilized from previous input+state change ...

e often satisfied: environment usually “slow enough”
o if not: add small delays to outputs

inputs

outputs
b X

B

Hazard-Free
Combinational
Network

One-Sided Timing Requirements (cont.)

#2. Next Input Burst (cont.): must not arrive until entire
machine has stabilized ...

“Generalized Fundamental Mode”: after each input burst arrives, a machine
‘hold time requirement’ must be satisfied, before environment can apply the next input burst.

... Similar to notion of ‘hold-time’ for a latch or flip-flop, but now extended to an
entire small asynchronous controller.

An Example:

Outputs:
tack

peack
adbld

Inputs:
req-send

treq

rd-iq
adbld-out
ack-pkt

From HP Labs
“Mayfly” Project:
B.Coates, A.Davis, K.Stevens,
"The Post Office Experience: Designing a
Large Asynchronous Chip”,
INTEGRATION: the VLSI Journal, vol. 15:3,
pp. 341-66 (Oct. 1993)

req-send-/

treq-/ |
tack-

| peack+
adbld-out- érd-iq-/

treq- ack-pkt+/ |

peack+

“PE-SEND-IFC" Controller (HP Labs)

req-send+ treq+ rd-iq+/
adbld+

adbld-out+/

peack- adbld-
tack+

| ack-pkt+/

peack- tack-

treq+/

' tack+

ack-pkt- treq-/
peack- tack-

&

| adbld-out- treq-

rd-id+/ adbld+
adbld-out+/

peack+

adbld-out-
treq+ rd-iq+/

adbld+
rd-iq-/ peack-

peack+ tack+

: adbld- tack-
\ adbld-out- treq+ ack-pkt+/

An Example (cont.)

Design-Space Exploration

using MINIMALIST:
optimizing for area vs. speed

TfuTuUuuuddd

= "
|
LL
I—/
[> — .
[
> -
paack.
S D,
ack_pkt :l) == = L
I
adod_out i F) ™ v2
= s -
1d kg = e :'j ¥l
traq - g_\)o B !
———) vO
req_send [. }—\>° |
@- Py F

PE_SEND IFC-FL

iOTTu&wuu%Tuwuﬁduuuud$££

I
I X
-
[
L7
dk_pkt '_D—
adbld oul[_D_
e O
treq 1
1 o
req send 4 !

QU

PE_SEND_IFC-Fs

Some Technical Details:
Optimization Algorithms

A large set of CAD synthesis, optimization and verification
algorithms and tools have been developed:

2-Level Hazard-Free Logic Minimization ("min-logic”: several modes)
Optimal State Assignment ("CHASM")

Multi-Level Logic Optimization ("MLO")

Controller Decomposition (“bm_decomp”)

Inserting Initialization Circuitry (“pla2verilog”)

Verification: functionality/hazard-freedom (“bms-verify”)

2-Level Hazard-Free Logic Minimization:
An Example

min cost = 3 products min cost = 3 products

2-Level Hazard-Free Logic Minimization

Have developed 4 hazard-free logic minimizers:

o Basic Method: first exact solver for this problem

— S.M. Nowick/D.L. Dill:
(@) ICCAD-92 (IEEE International Conference on Computer-Aided Design),
(b) IEEE Trans. on Computer-Aided Design, vol. 14:8, pp.986-997 (Aug. 95)

e HFMIN: binary and symbolic exact minimizer
— R.M. Fuhrer/S.M. Nowick, in ICCAD-95.

o Espresso-HF: fast heuristic minimizer

e IMPYMIN: fast exact minimizer

— M. Theobald/S.M. Nowick, IEEE Trans. on Computer-Aided Design, vol.
17:11, pp.1130-1147 (Nov. 98)

\

2-Level Hazard-Free Logic Minimization

HFMIN.:
Unlike original (Nowick/Dill ['92]) algorithm:

e handles both binary and symbolic (‘multi-valued”) inputs

Used in industry and academia:
e academia: in 3D (UCSD), ACK (Utah) and UCLOCK tools

e Intel: used for async instruction-length decoder

e HP Labs (Stetson project: infrared communications chip)

e AMD (SCSI controller)

2-Level Hazard-Free Logic Minimization

IMPYMIN:

Fast algorithm for exact minimization:

e introduces novel method for generating DHF-primes:
— re-formulates as a synchronous prime generation problem

e uses compact “implicit” data structures: BDDs/ZBDDs

e calls highly-optimized existing synchronous CAD tools

— Scherzo [Coudert]

IMPYMIN vs. HFMIN: Results

I/0 #C HFMIN IMPYMIN
(#prods)| (in seqonds)

20/23 (97 impossible| 301

16/11 |77 1656 105

18/22 |34 172 52

32/33 |60 >72000

18/22 |37 151

2-Level Hazard-Free Logic Minimization

ESPRESSO-HF:

Fast heuristic minimization algorithm:

e based loosely on synchronous "ESPRESSO” algorithm

e solves all existing async benchmarks
o up to 32 inputs/33 outputs: < 2 minutes

e typical runtime: < 3 seconds

For large examples, usually within 3% of exact solution

42

CHASM: Optimal State Assignment

[Fuhrer/Lin/Nowick, ICCAD-95]

Overview:

e First general/systematic “optimal state encoding” algorithm
for asynchronous state machines

e Based on an “/nput encoding model’

e Modifies synchronous "KISS” algorithm [DeMicheli '85] to
insure:

- critical race-free encoding

- minimum-cost hazard-free logic

CHASM: Optimal State Assignment

Special Feature: “Output-Targeted” State Assignment

Observation:
e output logic often determines latency in an async FSM

Goal:

e pick state assignment which yields best output logic
e ... while still insuring “correct” next-state logic (critical race-free)

CHASM produces exact (i.e. optimal) solution for this problem

Asynchronous FSMs and Ciritical Paths

Observation: output logic often critical for async FSM latency

output logic

critical path is often input-to-output

MINIMALIST v2.0: New Features

Several useful features added to MINIMALIST in release v2.0:

Multi-Level Optimizer ("MLO"): multi-level logic optimization (w/Verilog output)

- see separate "MLO” tutorial (Minimalist download site)

“bm_decomp”: decomposition of large BM specifications

- see separate "bm-decomp” tutorial + docs (Minimalist download site)

. "pla2verilog”: Verilog back-end (2-level) + inserts initialization circuitry
. "bms2ps”: graphical display of BM specifications (creates Postscript)

. "bms-verify”: top-to-bottom verifier, checks BM spec against final implementation

- for #3-5, see part II of this Minimalist tutorial (demo part)

Other Advanced MINIMALIST Features

Several other advanced features previously added to MINIMALIST:

From Earlier Releases:

1. Technology Mapping: to “generalized C-elements”

2. Phase Optimization

Other Advanced MINIMALIST Features
#1. gC-Based Technology Mapping

Target = “Generalized C-element”:
async sequential component implementing “set” (n-stack) and “reset” (p-stack) conditions

—_

p-stack g
|4>|>‘_|_>

n-stack

\

New exact hazard-free gC logic minimizer: “gC-min”
[Alexander Shapiro/S. Nowick ‘00]

Other Advanced MINIMALIST Features

#1. gC-Based Technology
Mapping: an Example
(hazard-free synthesis)

AB
cp 00 01 11 10

00 1

1
01] 1

1 1 0
1

10| 1

Boolean function +
specified input transitions

(a) 2-level:

Other Advanced MINIMALIST Features

#2. Phase Optimization [Alexander Shapiro, S. Nowick ‘00]

Goal: for each output and next-state function x...

e implement both x and x’
e select best result = "phase optimization”
— if X" selected: add output inverter

Now included in several MINIMALIST steps:

e |ogic minimization: both 2-level and gC-min
e optimal state assignment:
— CHASM: target state assignment to selected phase choices

Other Advanced MINIMALIST Features

(a) Without phase optzn.:

#2. Phase Optimization:

.\
cp 00

00

gw> g» @k QRgo»

1
01] 1

111 0
1

10| 1 1

Boolean function +

specified input transitions Add inverter:

User-Selectable Modes

MINIMALIST provides several options for
user “design-space exploration”:

machine style
logic implementation style
cost function

state assignment style

User-Selectable Modes

Many choices to allow user “design space exploration”:
#1. Machine Style: “fedback outputs” vs. none

(a) No Fedback Outputs: benefit = sometimes smaller output loads
(lower latency)

input | \ output
Hazard-Free

Combinational
Network

state

User-Selectable Modes
#1. Machine Style (cont.)

(b) Fedback Outputs: benefit = sometimes less area/fewer state bits

input | \ ‘ output
Hazard-Free

Combinational
Network

User-Selectable Modes

#2. Logic Implementation Styles: 3 Choices

(a) "Multi-Output”:

e share products across all outputs + next-state
— goal: area

(b) "Single-Output”;
e no shared products: implement each function separately
— goal: performance

(c) "Output-Disjoint”:
e share products only: (i) among outputs, and (ii) among next-state
— goal: balanced

User-Selectable Modes

#2. Logic Styles:

(@) "Multi-Output”:

outputs

share products between
outputs + next-state

benefit:
- area (sometimes) next-state

User-Selectable Modes

#2. Logic Styles:

(b) “Single-Output”:

do not share products! > outputs

benefit:
- speed (sometimes)

> next-state

User-Selectable Modes
#2. Logic Styles:

(c) "Output-Disjoint”:

> outputs
share products only:

-among outputs
-among next-state

benefit:
-balanced approach
(speed/area -- sometimes)

algorithmic feature:

- the opt. state assignment
method can ensure
optimal sharing of products
among primary outputs

> next-state

User-Selectable Modes

#3. Cost Function:

What to minimize...”?:
(a) # products

(b) # literals

(c) # “primary I/O literals”: on critical input-to-output paths

Motivation of (c): lower latency...

e primary inputs/primary outputs: (often) form the critical path

e state changes: (often) non-critical, occur in background mode

User-Selectable Modes
#3. Logic Cost Function (cont.): (c) “Primary I/O Literals”

EXAMPLE:

After Multi-Level Decomposition:
"extract out” all present-state literals

| Tl ZoleviE| E | to improve machine latency

primary inputs

+" %o
G
L]
n -

“
] a -
. b :

present-state R 2
5
wyls

>-LEVEL CIRCUIT: DERIVING MULTI-LEVEL CIRCUIT:

1st Option apply logic decomposition to speed up primary
input-to-output path

User-Selectable Modes
#3. Logic Cost Function (cont.): (c) “Primary I/O Literals”
EXAMPLE (cont.):

After Multi-Level Decomposition:
"extract out” all present-state literals
to improve machine latency

|Initial 2-Level Circuit: |

primary input

resent-state © Y0 i |m
" =t =
. Yo,

2-LEVEL CIRCUIT: DERIVING MULTI-LEVEL CIRCUIT:
2nd Option apply logic decomposition to speed up primary input-
to-output path

User-Selectable Modes
#3. Logic Cost Function (cont.): (c) “Primary I/O Literals”

Conclusion: Pick 2-Level Circuit “"Option #2"

> it has more literals,
> ...yet results in a faster multi-level circuit
(after multi-level logic decomposition)

Cost Function "Primary Input/Output Literals”...:

>produces 2-level circuit with fewest (primary) input literals
for each primary output

>next: apply multi-level logic decomposition (automatically with "MLO”, or manual):

- factor out “'present-state literals” (non-critical)

>result: multi-level circuit with optimized (critical) primary input-to-output paths

User-Selectable Modes
#4. State Assignment Style: Several Options

(a) Critical Race-Free (basic):
e NO optimization

(b) Optimal (CHASM): exact solution

e solve all optimality constraints

(c) Optimal (CHASM): “fixed-length” encoding
e ‘“heuristic mode”
e partially solve optimality constraints (fewer state bits)

(d) Optimal (CHASM): “output-only” mode
e outputs: exact min-cost solution
e next-state: ignore/just insure they are critical race-free

MINIMALIST: Experimental Results

(from earlier release v1.2)

Performance

(single-out

put)

MINIMALIST

Area

(multi-output)

4/9/3
5/10/4
5/11/4
5/10/7
13/33/14
8/27/12
13/33/14
8/25/12
10/45/5

Prod

31
26
28
21

50
87
46

S

105
87
92
73

FBO

prods

olits

FBO

prods

lits

Yes

Yes
Yes
Yes
Yes
Yes
Yes

31
23
24
19
93
43
61
45
89

38
56
48
56

98

Yes
Yes

Yes
Yes
Yes
Yes
Yes
Yes

18
17
19
13
3
28
45
30
65

67
63
75
54

Performance: avg. reduction of 11% (up to 37%) in output literals.

Area: avg. reduction of 33% (up to 48%) in total literals.

Evaluation and Summary

Some Characteristics, and Potential Advantages,
of Burst-Mode Circuits:

1. Simple Timing Requirements:

e Combinational Logic: highly robust
— "forward” logic path: always hazard-free, regardless of gate/wire delays
+ no timing assumptions (to process one “input burst” through comb. logic)

+ no “isochronic forks” required

» hazard-free regardless of gate or wire delays

e Sequential Operation:
— must satisfy simple one-sided timing requirements

Evaluation and Summary

2. Provides "Complete” Synthesis Path: always succeeds

e Given: any legal burst-mode specification (BM/XBM)

e Apply:
— (constrained) state minimization
— (critical race-free) state assignment
— (hazard-free) 2-level logic minimization

e Result: always guaranteed hazard-free “gate-level circuit”:
2-level/multi-level implementation

— no backtracking/iteration ever required

Evaluation and Summary

3. Hazard-Free Logic Decomposition:

Wide range of safe “hazard-non-increasing” transformations:

— not generally safe for ‘speed-independent” (QDI) circuits!
and many other algebraic transformations
simple to ensure correctness

Unlike speed-independent circuits, no need for:

e “acknowledgment forks”, state-holding elements within combinational
logic, etc.

Evaluation and Summary

3. Hazard-Free Logic Decomposition (cont.):

Example: Associative Law
— in burst-mode circuits, never introduces hazards

c ~p—D-

(This transform may introduce hazards in “speed-independent” or “"QDI”
circuits.)

Evaluation and Summary

4. Optimal Synthesis Algorithms:

e Several “provably-optimal” algorithms (e.g. CHASM)

e Incorporates/exploits several highly-optimized synchronous CAD tools

for sub-steps (Scherzo, espresso, dichot, etc.)

Evaluation and Summary

5. Generalized Fundamental-Mode Operation:

e BM Target: designing controllers with low latency (i.e. input-to-output response time)

e Tradeoff: must allow machine to "settle” (i.e. hold-time) between input events,
before next input can be applied

e In practice, this timing assumption often satisfied:

— fundamental mode timing “window”: usually very small settling time
+ typical BM controllers are small: only 2-3 gates “deep” in logic

+ “settling time”: usually much less than time for environment to send new inputs

— industrial experiences: NASA Goddard (2006-7), HP Labs ("Stetson” 94), etc.
+ ... confirm practicality of handling these timing constraints for many applications

e If cannot be satisfied: can always add extra delay to primary outputs
— will allow machine to settle before outputs are sent to environment

Conclusions

“Burst-Mode” Asynchronous Controllers:

e used effectively in several experimental industrial designs:
— Recent (2006-2007): NASA Goddard Space Flight Center
— Earlier: Intel, AMD, HP Labs

New “MINIMALIST” Asynchronous CAD Package:

CHASM: optimal state assignment

HFMIN, IMPYMIN, espresso-HF: hazard-free 2-level logic min
gC-Min: gC-based tech-map

Verifier: combinational + sequential (hazards, functionality)
Verilog output, graphic interfaces

Overall Goals:
e providing many user options: ‘design space exploration”
e globally-optimal algorithms

