
1

An Introduction to
Hazard-Free Logic Synthesis

(Fundamental Mode)

Steven M. Nowick
Columbia University

(nowick@cs.columbia.edu)

July 15, 2002

2

Goal

Given: a Boolean function
Design: a hazard-free circuit implementation

Hazard-Free
Combinational

Logic

2

3

Goal

Given: a Boolean function
Design: a hazard-free circuit implementation

Hazard-Free
Combinational

Logic

- 2-level

- multi-level

- technology-
 mapped

- correct
- …optimal!

4

Outline

Basics: Hazards

Part I. 2-Level Logic

Part II. Multi-Level Logic and
 Technology Mapping

Conclusions

3

5

Basics
1) “Input Transition”

 = “multiple-input transition”, “multiple-input change” [MIC]

 = a change from one input vector to another

Combinational
Logic

1->0

0->1

1->1

0->0

Assume: “clean” input transitions => no glitches!

6

Basics
2) Circuit Model

 Assume an “unbounded wire delay” model

Combinational Logic
1->0

0->1

1->1

0->0

… gates and wires may have arbitrary (finite) delays!

A’
B
C

A’
B
D
B
C’
D

4

7

The Goal
 Given a specified input transition, synthesize a circuit

 impltn. with no “combinational hazards” for this
 transition (i.e. no possible glitch on outputs!)

Combinational Logic
1->0

0->1

1->1

0->0 A’
B
C

A’
B
D
B
C’
D

… assuming above circuit & environmental models…. Hazardous

8

The Goal
 Given a specified input transition, synthesize a circuit

 impltn. with no “combinational hazard” for this
 transition (i.e. no possible glitch on outputs!)

Combinational Logic
1->0

0->1

1->1

0->0 A’
B
C

A’
B
D
B
C’
D

… assuming above circuit & environmental models…. Hazard-Free

5

9

Basics
3) Environmental Model

 Assume “generalized fundamental mode”

Combinational Logic
1->0

0->1

1->1

0->0

… after an input transition, no new inputs may arrive until
 the circuit has stabilized!

A’
B
C

A’
B
D
B
C’
D

10

Key Differences from
“QDI” Hazard-Free Design

1. Combinational Circuit Model: now more robust!

 - circuits correct for arbitrary gate + wire delays

 - … vs. QDI: uses “isochronic fork” assumption

2. Environmental Model: “generalized fundamental mode”

 - now, timing assumptions on environment (1-sided)

 - … vs. QDI: “input/output mode” (= none)

6

11

Basics: Combinational Hazards

Two types of combinational hazards:

1. Function Hazard:

 - inherent in combinational function

2. Logic Hazard:

 - inherent in circuit implementation

12

0 0 0 0

0 1 0 0

0 1 0 0

0 1 1 0

Function Hazards

AB

CD 00 01 11 10

 00

 01

 11

 10

Non-monotonic changes
 on output function
 during an input transition
 (i.e., >1 change on output!)

Function + 4 input transitions

7

13

0 0 0 0

0 1 0 0

0 1 0 0

0 1 1 0

Function Hazards

AB

CD 00 01 11 10

 00

 01

 11

 10

Non-monotonic changes
 on output function
 during an input transition
 (>1 change on output!)

function hazards

function hazard-free

14

Function Hazards: Summary

Function hazards: cannot be removed
•  inherent in function itself
•  cannot guarantee glitch-free logic implementation [Unger]

Therefore, only consider function hazard-free transitions:
•  most “specified behaviors” = naturally monotonic (not glitchy)

Sequential synthesis methods:
•  must not introduce function hazards

Burst-mode: uses ...
•  constrained ‘state minimization’ + ‘state assignment’ steps
•  always succeeds: no undesired function hazards introduced….

8

15

Logic Hazards
Now, assume function hazard-free input transitions….

Logic Hazard = property of a given circuit implementation

Def. Logic Hazard: Given combinational function f,
 circuit implementation C, and an input transition t.

 If f is function hazard-free for input transition t,

 but implementation C may glitch during transition t,

 then circuit C has a logic hazard for transition t.

 Otherwise, circuit C is logic hazard-free for transition t.

16

0 0 0 0

0 1 0 0

0 1 0 0

0 1 _ 0

B
C

Logic Hazards
AB

CD 00 01 11 10

 00

 01

 11

 10

D’

A’
B
D

Logic hazard

“input change”: D: 1-->0
(ABC=011) Function hazard-free

input transition

9

17

0 0 0 0

0 1 0 0

0 1 0 0

0 1 _ 0

B
C

Logic Hazards

“input change”: D: 1-->0
(ABC=011)

AB

CD 00 01 11 10

 00

 01

 11

 10

D’

A’
B
D

No logic hazard

(1)

(1)

A Different Implementation

18

Part I

Two-Level Logic

10

19

Part I: Outline

n  Problem #1: Eliminating Logic Hazards for

 One Input Transition

n  Problem #2: Eliminating Logic Hazards for

 Several Input Transitions

n  2-Level Hazard-Free Logic Minimization:

 a Complete Example

n  Existence of a Hazard-Free Solution

n  An Alternative Approach: Using GC-Elements

20

PROBLEM #1: Eliminating Logic Hazards
for One Input Transition

Given: a combinational function f,

 and a function hazard-free input transition t.

Goal: find a 2-level (AND-OR) implementation of f

 which is logic hazard-free for input transition t.

11

21

SUMMARY:
Eliminating Logic Hazards
for One Input Transition

transition type hazard-free requirements

0 --> 0 ?

1 --> 1 ?

1 --> 0, ?
0 --> 1

22

0 0 0 0

0 1 0 0

0 1 0 0

0 1 _ 0

B
C

Eliminating Hazards:
“Static Transition” (0->0)

“input change”: BC: 10-->01
(AD=11)

AB

CD 00 01 11 10

 00

 01

 11

 10

D’

A’
B
D

Example Circuit

12

23

0 0 0 0

0 1 0 0

0 1 0 0

0 1 _ 0

B
C

Eliminating Hazards: 0->0 Transition
AB

CD 00 01 11 10

 00

 01

 11

 10

D’

A’
B
D

No Requirement!

If no function hazard,
then every 2-level implementation

is free of logic hazards [Unger]

0

0

0

24

0 0 0 0

0 1 0 0

0 1 0 0

0 1 _ 0

B
C

Eliminating Hazards:
“Static Transition” (1->1)

“input change”: D: 1-->0
(ABC=011)

AB

CD 00 01 11 10

 00

 01

 11

 10

D’

A’
B
D

fast

slow!

Example Circuit

13

25

B
C

Eliminating Hazards: 1->1 Transition
AB

CD 00 01 11 10

 00

 01

 11

 10

D’

A’
B
D

1

1

0

0 0 0 0

0 1 0 0

0 1 0 0

0 1 _ 0

26

0 0 0 0

0 1 0 0

0 1 0 0

0 1 _ 0

B
C

Eliminating Hazards: 1->1 Transition
AB

CD 00 01 11 10

 00

 01

 11

 10

D’

A’
B
D 1

0

14

27

0 0 0 0

0 1 0 0

0 1 0 0

0 1 _ 0

B
C

Eliminating Hazards: 1->1 Transition
AB

CD 00 01 11 10

 00

 01

 11

 10

D’

A’
B
D

0

28

0 0 0 0

0 1 0 0

0 1 0 0

0 1 _ 0

B
C

Eliminating Hazards: 1->1 Transition
AB

CD 00 01 11 10

 00

 01

 11

 10

D’

A’
B
D

15

29

0 0 0 0

0 1 0 0

0 1 0 0

0 1 _ 0

B
C

Eliminating Hazards: 1->1 Transition
AB

CD 00 01 11 10

 00

 01

 11

 10

D’

A’
B
D

hazardous!

30

0 0 0 0

0 1 0 0

0 1 0 0

0 1 _ 0

A’
B

Eliminating Hazards: 1->1 Transition

AB

CD 00 01 11 10

 00

 01

 11

 10

C

A’
B
D

hazard-
free!

1

1

Alternative Circuit

stays at 1

16

31

0 0 0 0

0 1 0 0

0 1 0 0

0 1 _ 0

Eliminating 1->1 Hazard: Summary

“required cube”: must be completely
contained in some product

hazardous hazard-free

0 0 0 0

0 1 0 0

0 1 0 0

0 1 _ 0

NO YES

Requirement

32

0 0 0 0

0 1 1 0

0 1 0 0

0 1 0 0

Eliminating Hazards:
“Dynamic Transition” (1->0 or 0->1)

“input change”: AC: 00->11
(BD=11)

AB

CD 00 01 11 10

 00

 01

 11

 10

Example Circuit

A’
B
C

B
C’
D

17

33

0 0 0 0

0 1 1 0

0 1 0 0

0 1 0 0

Eliminating Hazards: 1->0 Transition

AB

CD 00 01 11 10

 00

 01

 11

 10

A’
B
C

B
C’
D

Problem #1: 1-to-1 “partial transition” is hazardous:
 - violates 1->1 covering requirement

34

0 0 0 0

0 1 1 0

0 1 0 0

0 1 0 0

Eliminating Hazards: 1->0 Transition

AB

CD 00 01 11 10

 00

 01

 11

 10

Problem #1: “required cube” for partial transition
 - … not covered by any product!

A’
B
C

B
C’
D

18

35

0 0 0 0

0 1 1 0

0 1 0 0

0 1 0 0

Eliminating Hazards: 1->0 Transition

AB

CD 00 01 11 10

 00

 01

 11

 10

Solution: cover the “required cube” for each partial transition
 - … by some product

A’
B
C

A’
B
D
B
C’
D

Requirement #1

36

Eliminating Hazards: 1->0 Transition

0 0 0 0

0 1 1 0

0 1 0 0

0 1 0 0

AB

CD 00 01 11 10

 00

 01

 11

 10

A’
B
C

A’
B
D
B
C’
D

Problem #2: entire dynamic 1-to-0 transition still hazardous!

19

37

0 0 0 0

0 1 1 0

0 1 0 0

0 1 0 0

Eliminating Hazards: 1->0 Transition

AB

CD 00 01 11 10

 00

 01

 11

 10

A’
B
C

A’
B
D
B
C’
D

1

1

1

0

38

0 0 0 0

0 1 1 0

0 1 0 0

0 1 0 0

Eliminating Hazards: 1->0 Transition

AB

CD 00 01 11 10

 00

 01

 11

 10

A’
B
C

A’
B
D
B
C’
D

0

20

39

0 0 0 0

0 1 1 0

0 1 0 0

0 1 0 0

Eliminating Hazards: 1->0 Transition

AB

CD 00 01 11 10

 00

 01

 11

 10

A’
B
C

A’
B
D
B
C’
D

0

0
glitch!

40

0 0 0 0

0 1 1 0

0 1 0 0

0 1 0 0

Eliminating Hazards: 1->0 Transition

AB

CD 00 01 11 10

 00

 01

 11

 10

A’
B
C

A’
B
D
B
C’
D

0

0
glitch!

21

41

0 0 0 0

0 1 1 0

0 1 0 0

0 1 0 0

Eliminating 1->0 Hazard: Summary

 “illegal
intersection”

A’
B
C

A’
B
D
B
C’
D

42

0 0 0 0

0 1 1 0

0 1 0 0

0 1 0 0

Eliminating 1->0 Hazard: Summary

 no “illegal intersection”

A’
B
C

A’
B
D
B
C’
D

glitch-free!

0

Alternative Circuit:
Hazard-Free

D’

stays at 0

22

43

0 0 0 0

0 1 1 0

0 1 0 0

0 1 0 0

Eliminating 1->0 Hazard:
“Privileged Cubes”

- The entire dynamic transition is
called a “privileged cube”

“privileged cube”

“start point” (function is 1)

- No implicant can intersect any
“privileged cube” unless it also

contains its “start point”

44

0 0 0 0

0 1 1 0

0 1 0 0

0 1 0 0

0 0 0 0

0 1 1 0

0 1 0 0

0 1 0 0

Eliminating 1->0 Hazard: Summary

 legal intersection

hazardous hazard-free

illegal intersection

“privileged cube”: must not be
illegally intersected by any product Requirement #2

23

45

FINAL SUMMARY:
Eliminating Logic Hazards
for One Input Transition

transition type hazard-free requirements

0 --> 0 - [none]

1 --> 1 - required cube:
 must be covered by some implicant

1 --> 0, - required cubes:
0 --> 1 each must be covered by some implicant
 - privileged cube:
 must not be illegally intersected

46

PROBLEM #2: Eliminating Logic Hazards
for Several Input Transitions

“2-Level Hazard-Free Logic Minimization Problem”
Given:

•  a Boolean function
•  a specified set of input transitions

Find:
•  a minimum-cost 2-level implementation which is

 hazard-free for each specified input transition (i.e,
 guaranteed not to glitch)

Goals and Assumptions:
•  produce hazard-free combinational circuit:

– guaranteed glitch-free, regardless of gate+wire delays
•  inputs: assumed to be glitch-free

24

47

2-Level Hazard-Free Logic
Minimization Problem

Equivalent Goal

Find a 2-level circuit implementation, where:

•  no privileged cube is “illegally intersected” by a product; and

•  each required cube is completely contained in some product.

48

“Dynamic Hazard-Free (DHF)
Prime Implicants”

0 0
0 1
1 1
1 0

Prime Implicant

0 0
0 1
1 1
1 0

NOT DHF-Prime:
has illegal

intersection

0 0
0 1
1 1
1 0

DHF-Prime
Implicant:
no illegal

intersections

DHF-Prime Implicant =

a maximal implicant which
has no “illegal intersections”

with any privileged cubes

25

49

2-Level Hazard-Free Logic
Minimization Problem (cont.)

Revised Goal (version #2):

Find a 2-level circuit implementation:

•  … using only DHF-prime implicants,

•  … where each required cube is completely covered

 by some product.

50

2-Level Logic Minimization: a Comparison
(Classic vs. Hazard-Free)

In each case, solve a “covering problem”:
 <“objects to be covered”, “covering objects”>

n  Classic (Quine-McCluskey method, espresso-exact, …):

 <on-set minterms, prime implicants>

n  Hazard-Free (Nowick/Dill [92]):

 <required cubes, DHF-prime implicants>

26

51

2-Level Logic Minimization: a Comparison

New Method: Hazard-Free [Nowick/Dill ‘92]

 Step 1: Generate All DHF-Prime Implicants

 Step 2: Generate DHF-Prime Implicant Table

 Step 3: Solve Covering Problem

Classic Method: Non-Hazard-Free

 Step 1: Generate All Prime Implicants

 Step 2: Generate Prime Implicant Table

 Step 3: Solve Covering Problem

52

1 1 1 1

0 1 1 1

1 1 1 0

1 1 0 0

2-Level Hazard-Free Logic Minimization:
a Complete Example

Boolean Function +
4 (function hazard-free) input transitions

ab

cd
00 01 11 10

00

01

11

10

[from: Nowick/Dill, ICCAD’92;
 IEEE Trans. On CAD Aug.’95]

27

53

1 1 1 1

0 1 1 1

1 1 1 0

1 1 0 0

2-Level Hazard-Free Logic Minimization:
a Complete Example

Required Cubes:
Each required cube must
be completely contained

in some product

54

2-Level Hazard-Free Logic Minimization:
a Complete Example

Privileged Cubes:
If any product intersects a

privileged cube,
it must also intersect its start point

1 1 1 1

0 1 1 1

1 1 1 0

1 1 0 0

28

55

2-Level Hazard-Free Logic Minimization:
a Complete Example

Step 1: Generate All DHF-Prime Implicants

Approach: 2 steps
 - Generate All Prime Implicants
 - Reduce to DHF-Prime Implicants

1 1 1 1

0 1 1 1

1 1 1 0

1 1 0 0

ab

cd
00 01 11 10

00

01

11

10

56

1 1 1 1

0 1 1 1

1 1 1 0

1 1 0 0

2-Level Hazard-Free Logic Minimization:
a Complete Example

Step 1: Generate All DHF-Prime Implicants

Approach: 2 steps
 Generate All Prime Implicants
 - Reduce to DHF-Prime Implicants

Total: 7 Prime Implicants

29

57

2-Level Hazard-Free Logic Minimization:
a Complete Example

Step 1: Generate All DHF-Prime Implicants

Approach: 2 steps
 - Generate All Prime Implicants
 Reduce to DHF-Prime Implicants

 = privileged cube

1 1 1 1

0 1 1 1

1 1 1 0

1 1 0 0

58

2-Level Hazard-Free Logic Minimization:
a Complete Example

Step 1: Generate All DHF-Prime Implicants

Approach: 2 steps
 - Generate All Prime Implicants
 Reduce to DHF-Prime Implicants

Some primes have
no illegal intersections

=> they are DHF-primes

1 1 1 1

0 1 1 1

1 1 1 0

1 1 0 0

30

59

2-Level Hazard-Free Logic Minimization:
a Complete Example

Step 1: Generate All DHF-Prime Implicants

Approach: 2 steps
 - Generate All Prime Implicants
 Reduce to DHF-Prime Implicants

Some primes have
no illegal intersections

=> they are DHF-primes

1 1 1 1

0 1 1 1

1 1 1 0

1 1 0 0

60

2-Level Hazard-Free Logic Minimization:
a Complete Example

Step 1: Generate All DHF-Prime Implicants

Approach: 2 steps
 - Generate All Prime Implicants
 Reduce to DHF-Prime Implicants

Other primes have
illegal intersections

=> they must be reduced

1 1 1 1

0 1 1 1

1 1 1 0

1 1 0 0

illegal intersection!

31

61

2-Level Hazard-Free Logic Minimization:
a Complete Example

First reduction of prime implicant

new illegal intersection!

1 1 1 1

0 1 1 1

1 1 1 0

1 1 0 0

Step 1: Generate All DHF-Prime Implicants

1 1 1 1

0 1 1 1

1 1 1 0

1 1 0 0

62

2-Level Hazard-Free Logic Minimization:
a Complete Example

Step 1: Generate All DHF-Prime Implicants

Second reduction of prime implicant

All illegal intersections eliminated

DISCARD: contained
 in a DHF-Prime

KEEP: new DHF-Prime

1 1 1 1

0 1 1 1

1 1 1 0

1 1 0 0

1 1 1 1

0 1 1 1

1 1 1 0

1 1 0 0

32

63

2-Level Hazard-Free Logic Minimization:
a Complete Example

Step 1: Generate All DHF-Prime Implicants

Approach: 2 steps
 - Generate All Prime Implicants
 Reduce to DHF-Prime Implicants

Other primes have
illegal intersections

=> they must be reduced

illegal intersection!

1 1 1 1

0 1 1 1

1 1 1 0

1 1 0 0

64

2-Level Hazard-Free Logic Minimization:
a Complete Example

Step 1: Generate All DHF-Prime Implicants

First reduction of prime implicant

All illegal intersections eliminated

DISCARD: contained
 in a DHF-Prime

1 1 1 1

0 1 1 1

1 1 1 0

1 1 0 0

1 1 1 1

0 1 1 1

1 1 1 0

1 1 0 0

33

65

1 1 1 1

0 1 1 1

1 1 1 0

1 1 0 0

2-Level Hazard-Free Logic Minimization:
a Complete Example

Step 1: Generate All DHF-Prime Implicants

Final Result:
6 DHF-Prime Implicants

P2

P5

P1

P6

P4

P3

66

 X

X

 X X

 X

 X

2-Level Hazard-Free Logic Minimization:
a Complete Example

Step 2: Generate DHF-Prime Implicant Table

DHF-Prime Implicants
P2 P5 P1 P6 P4 P3

Re
qu

ire
d

Cu
be

s

ac’

a’c’d’

a’bc’

a’c

bcd

34

67

 X

X

 X X

 X

 X

2-Level Hazard-Free Logic Minimization:
a Complete Example

Step 3: Solve Covering Problem

DHF-Prime Implicants

P2 P5 P1 P6 P4 P3

Re
qu

ire
d

Cu
be

s

ac’

a’c’d’

a’bc’

a’c

bcd

= pick all essential
 DHF-primes pick either DHF-prime

68

2-Level Hazard-Free Logic Minimization:
a Complete Example

Final Hazard-Free Circuit (minimum-cost):

B
C
D

A
C’

A’
C

A’
B

C’
D’

1 1 1 1

0 1 1 1

1 1 1 0

1 1 0 0

ab

cd
00 01 11 10

00

01

11

10

5 DHF-Prime Implicants

35

69

2-Level Hazard-Free Logic Minimization:
a Complete Example

Final Non-Hazard-Free Circuit (minimum-cost):

B
D

A
C’

A’
C

C’
D’

ab

cd
00 01 11 10

00

01

11

10

4 Prime Implicants

1 fewer product

illegal intersection => logic hazard

1 1 1 1

0 1 1 1

1 1 1 0

1 1 0 0

70

_ 1 1 _

1 1 _ 0

1 1 _ _

1 0 0 0

_ 1 1 _

1 1 _ 0

1 1 _ _

1 0 0 0

2-Level Hazard-Free Logic Minimization:
Another Example

Non-hazard-free:
 min cost = 3 products

Hazard-free:
 min cost = 3 products

same # of products

36

71

1 1 1 1

0 1 1 1

1 1 1 0

1 1 0 0

Existence of a Hazard-Free Solution

ab

cd
00 01 11 10

00

01

11

10

New Example: add 1 more
input transition

Challenge: a hazard-free 2-level implementation
does not always exist!

72

Existence of a Hazard-Free Solution

ab

cd
00 01 11 10

00

01

11

10

ab

cd
00 01 11 10

00

01

11

10

Every implicant containing the new required cube
also has an illegal intersection!

1 1 1 1

0 1 1 1

1 1 1 0

1 1 0 0

1 1 1 1

0 1 1 1

1 1 1 0

1 1 0 0

No hazard-free 2-level implementation exists

37

73

 X

X

 X X

 X

 X

Existence of a Hazard-Free Solution
DHF-Prime

Implicant Table DHF-Prime Implicants
P2 P5 P1 P6 P4 P3

Re
qu

ire
d

Cu
be

s

ac’

a’c’d’

a’bc’

a’c

bcd

abd new
not

 covered!

74

Existence of a Hazard-Free Solution

Conclusion:
•  asynchronous sequential synthesis methods:

must produce functions for which hazard-free
implementations exist!

Burst-Mode Synthesis Methods: impose constraints on
•  state minimization
•  state assignment

… to generate Boolean functions where all logic hazards
 can always be eliminated

 Always guarantee a hazard-free solution exists

38

75

An Alternative Approach:
using “Generalized C-Elements”

Alternative to 2-Level Logic

Target = “Generalized C-element (GC)”:

 reset =
 p-stack

set =
 n-stack

76

1 1 1 0

1 1 _ _

1 0 0 _

1 1 1 1

Hazard-Free Logic Using GC-Elements
gC-Based Mapping:

 an Example

reset =
 p-stack

set =
 n-stack

AB
CD 00 01 11 10

 00

 01

 11

 10

A’
C’

Function

A’
B’
A’
D’
A
B

B’

D’
C’

A’

C
B

D’

C
D’

A

A

D’
C

A’
C’

2-level:

gC:

39

77

A Reading List
Hazard Basics:

•  S. Unger, Asynchronous Sequential Switching Circuits, Wiley Interscience, 1969

•  J. Beister, “A Unified Approach to Combinational Hazards”, IEEE Transactions
 on Computers, vol C-23, no. 6, 1974

•  S.M. Nowick, Automatic Synthesis of Burst-Mode Asynchronous Controllers,
 PhD Thesis, Stanford University, March 1993 (revised technical report,
 Stanford Computer Systems Lab CSL-TR-95-686, Dec. 1995).

•  S.M. Nowick and D.L. Dill, “Exact Two-Level Minimization of Hazard-Free
 Logic with Multiple-Input Changes”, IEEE Transactions on Computer-Aided
 Design, vol. 14, pp. 986-997, August 1995

Two-Level Hazard-Free Logic Minimization:
Basic Method: (first complete solution) exact hazard-free minimization
•  S.M. Nowick and D.L. Dill, “Exact Two-Level Minimization of Hazard-Free

 Logic with Multiple-Input Changes”, IEEE Transactions on Computer-Aided
 Design, vol. 14, pp. 986-997, August 1995

78

A Reading List (cont.)
Two-Level Hazard-Free Logic Minimization (cont.):

HFMIN: binary & symbolic (exact) hazard-free minimization
•  R.M. Fuhrer and S.M. Nowick, Sequential Optimization of Asynchronous

 and Synchronous Finite-State Machines: Algorithms and Tools.
 Kluwer Academic, 2001.

Recent Methods: Exact Solutions
•  “IMPYMIN”: M. Theobald and S.M. Nowick, “Fast Heuristic and Exact

 Algorithms for Two-Level Hazard-Free Logic Minimization”, IEEE Transactions
 on Computer-Aided Design, vol. 17, pp. 1130-1147, November 1998

•  C. Myers and H. Jacobson, “Efficient Exact Two-Level Hazard-Free Logic
 Minimization”, Async-01 Symposium (IEEE Int. Symp. On Advanced Rsrch.
 In Asynchronous Circuits and Systems), pp. 64-73, March 2001

•  J. Rutten, M. Berkelaar, et al., “An Efficient Divide and Conquer Algorithm for
 Exact Hazard-Free Logic Minimization”, Design, Automation and Test in
 Europe Conference (DATE), pp. 749-754, February 1998.

Recent Methods: Heuristic Solutions
•  “ESPRESSO-HF”: M. Theobald and S.M. Nowick, “Fast Heuristic and Exact

 Algorithms for Two-Level Hazard-Free Logic Minimization”, IEEE Transactions
 on Computer-Aided Design, vol. 17, pp. 1130-1147, November 1998

40

79

Part II

Multi-Level Logic
and Technology Mapping

80

Goal: Hazard-Free Multi-Level Logic

Strategy

Start with: hazard-free 2-level logic
Apply: hazard-non-increasing multi-level transformations

Hazard-Free
Multi-Level

Logic

Hazard-Free
2-Level Logic

safe transformations

41

81

Hazard-Non-Increasing
Multi-Level Transforms

A Large Menu of “Safe Transforms”: [Unger, Kung]

n  Associative Law

n  Factoring

n  DeMorgan’s Law

n  … Many others:
•  Kernel & Cube Factoring
•  Dual Global Flow
•  Double Inversion
•  Tree Decomposition of a Gate

82

Associative Law (1)

Example: decomposing large fan-in gates

D

B
C

B

D
C

This transform may introduce hazards in ‘speed-independent’ or ‘QDI’
circuits.

A

A

D
C
B
A

F = A*B*C*D

F = A*(B*(C*D))

F = (A*B)*(C*D)

42

83

Associative Law (2)

Example: decomposing large fan-in gates

D

B
C

B
D
C

This transform may introduce hazards in ‘speed-independent’ or ‘QDI’
circuits.

A

A

D
C
B
A

F = A+B+C+D

F = A+(B+(C+D))

F = (A+B)+(C+D)

84

Factoring

Example:

B
C
D

A
C’

A’
C

C’
D’

D

C
D

E

B

A
C’

A’

C’
D’

E

C
D

43

85

DeMorgan’s Law

Example:

 (A+B+C+D)’ = A’*B’*C’*D’

(A*B*C*D)’ = A’+B’+C’+D’

Allows replacement of AND/OR gates by NAND (NOR) gates

A
’ B
’ C
’ D
’

D

B
C

A

A
’ B
’ C
’ D
’

D

B
C

A

86

Example: 2-Level Circuit (cont.)

B
C
D

A
C’

A’
C

A’
B

C’
D’

B’
C’
D’

A’
C

A
C’

A
B’

C
D

44

87

Summary

Hazard-Non-Increasing Transforms:

n  Allow hazard-free decomposition into simple gates (always!)

n  Wide & flexible range of safe transforms:
•  much overlap with ‘scripts’ of Synopsys Design Compiler

n  Less restrictive than QDI or speed-independent transforms:
•  many safe “fundamental mode” multi-level transforms fail with QDI

 [e.g. associative law]

88

Hazard-Free Technology Mapping

1. Basic approach:
•  Siegel, De Micheli [DAC’93]

2. For improved “average-case performance”:
•  basic: Beerel et al. [Async’96]
•  transistor-level optimization: James, Yun [Async’98]

3. For complex CMOS gates:
•  Kudva et al. [DAC’96]

45

89

A Reading List
Hazard-Free Multi-Level Logic:

•  S. Unger, Asynchronous Sequential Switching Circuits, Wiley Interscience, 1969

•  D. Kung, “Hazard-non-increasing gate-level optimization algorithms”,
 IEEE International Conference on CAD (ICCAD), pp. 631-634, Nov. 1992

•  B. Lin and S. Devadas, “Synthesis of Hazard-Free Multi-Level Logic Under
 Multiple-Input Changes from Binary Decision Diagrams”, IEEE Transactions
 on Computer-Aided Design, vol. 14:8, pp. 974-985, August 1995

Hazard-Free Technology Mapping:
•  P. Siegel, G. De Micheli, and D. Dill, “Automatic Technology Mapping for

 Generalized Fundamental Mode Asynchronous Designs,” IEEE Design
 Automation Conference (DAC), pp. 61-67, June 1993

•  P.A. Beerel, K.Y. Yun, and W.C. Chou, “Optimizing Average-Case Delay in
 Technology Mapping of Burst-Mode Circuits”, Async Symposium (IEEE Intl.
 Symposium on Advanced Research in Async. Circuits and Systems),
 PP. 244-259, March 1996.

90

A Reading List (cont.)
Hazard-Free Technology Mapping (cont.):

•  K. James and K.Y. Yun, “Average-case optimized transistor-level technology
 mapping of extended burst-mode circuits”, Async Symposium (IEEE Intl.
 Symposium on Advanced Research in Async. Circuits and Systems),
 PP. 70-79, April 1998.

•  P. Kudva, G. Gopalakrishnan, H. Jacobson, and S. Nowick, “Synthesis of

 Hazard-Free Customized CMOS Complex-Gate Networks Under Multiple-Input

 Changes”, IEEE Design Automation Conference (DAC), pp. 77-82, June 1996

