
1

CSEE 4823 Advanced Logic Design
Handout: Lecture #6

9/22/16

Prof. Steven M. Nowick
nowick@cs.columbia.edu

Department of Computer Science (and Elect. Eng.)

Columbia University
New York, NY, USA

Iterative Circuits:
Example #2

(Mealy-machine based]

2

#3

Pattern Detector: Verbal Description

General Problem Statement: given a string X of input bits, which are expected to follow the repeated pattern “0011” (i.e.
 001100110011…), produce a corresponding string Z of output bits which flag any error locations
 with a ‘1’ bit (and all correct locations with a ‘0’ bit).

More Detailed Requirements: flagging errors

 - the machine first expects a ‘0’ input (if it receives any ‘1’ inputs, stay in initial state and flag these erroneous inputs)

 - after it receives its first ‘0’ bit, it outputs a ‘0’ (no error), and waits for a second bit

 - if second bit is ‘0’, no error (output ‘0’)

 - if second bit is ‘1’, has error (output ‘1’)

 - … in each case, absorb the second input, and prepare for the next pair of ‘11’ bits

 - if the machine receives any more ‘0’ inputs, stay in the current state and flag these erroneous inputs

 - after it receives its first ‘1’ bit, it outputs a ‘0’ (no error), and waits for a second bit

 - if second bit is ‘1’, no error (output ‘0’)

 - if second bit is ‘0’, has error (output ‘1’)

 - … in each case, absorb the second input, and prepare for the next pair of ‘00’ bits

 … go to top and repeat

#4

Iterative Circuit Synthesis: Mealy-based

FSM Block Diagram: bit-serial processing

Mealy State Diagram: bit-serial processing

xi zi

S0 S1 S2

S3

1/1 0/1

0/0

1/1

0/0

0/1

1/0
1/0

3

#5

Iterative Circuit Synthesis: Mealy-based

Symbolic State Table:

State Assignment (i.e. State Encoding):

 PS input NS output
xi zi

S0 0 S1 0
S0 1 S0 1
S1 0 S2 0
S1 1 S2 1
S2 0 S2 1
S2 1 S3 0
S3 0 S0 1
S3 1 S0 0

 State
Assigned Code

S0 0 0

ai bi

S1 0 1
S2 1 1
S3 1 0

#6

Iterative Circuit Synthesis: Mealy-based

Encoded State Table:

 PS input NS output
xi zi

00 0 01 0
00 1 00 1
01 0 11 0
01 1 11 1
11 0 11 1
11 1 10 0
10 0 00 1
10 1 00 0

ai bi ai+1 bi+1

4

#7

Iterative Circuit Synthesis: Mealy-based

Karnaugh Maps:

Final 2-Level (Sum-of-Products) Minimized Equations -- with some logic optimization added

0 0

1 1

1 1

0 0

 0 1!

00

01

11

10

xi

ai bi

ai+1

1 0

1 1

1 0

0 0

 0 1!

00

01

11

10

xi

ai bi

bi+1

0 1

0 1

1 0

1 0

 0 1!

00

01

11

10

xi

ai bi

zi

ai+1 = bi

bi+1 = ai’ xi’ + xi’ bi + ai’ bi

zi = xi ai’ + xi’ ai = xi ⊕ ai

#8

Iterative Circuit Synthesis: Mealy-based

Iterative Cell: Gate-Level Implementation

regular instance (i.e. typical cell): use equations on previous page

ai
bi

ai+1
bi+1

zi

xi

5

#9

Iterative Circuit Synthesis: Mealy-based

Iterative Cell: Gate-Level Implementation

Optimized leftmost cell (= Cell #1): simplify earlier equations

a2 = 0
b2

z1

x1

a2 = b1 = 0

b2 = a1’ x1’ + x1’ b1 + a1’ b1 = x1’

z1 = x1 a1’ + x1’ a1 = x1

Special condition for cell #1: a1 b1 = 00!

Note: can eliminate a2 output, and simply
have a ‘0’ a2 input to next cell (Cell #2)

#10

Iterative Circuit Synthesis: Mealy-based

Iterative Cell: Gate-Level Implementation

Optimized second-to-leftmost cell (= Cell #2): propagate simplification

a3
b3

z2

x2

Special condition for cell #2: a2 = 0!

a2 = 0
b2

a3 = b2

b3 = a2’ x2’ + x2’ b2 + a2’ b2 = x2’ + x2’ b2 + b2 = x2’ + b2

z2 = x2 a2’ + x2’a2 = x2 ⊕ a2 = x2

6

#11

Iterative Circuit Synthesis: Mealy-based

Iterative Cell: Gate-Level Implementation

Optimized rightmost cell (= Cell #N): no need for next-state logic -- DELETE!

zn

xn

Special condition for cell #N (Mealy only):
 no next-state logic

an
bn

zn = xn an’ + xn’ an = xn ⊕ an

