CSEE 4823 Advanced Logic Design Handout: Lecture \#2
 9/8/16

Prof. Steven M. Nowick
nowick@cs.columbia.edu
Department of Computer Science (and Elect. Eng.) Columbia University New York, NY, USA

Combinational Loyic: Basic Definitions + 2-Level Logic Minimization

Review: Basic Definitions

```
Literal: a variable (x) or its complement ( }\mp@subsup{x}{}{\prime}\mathrm{ )
Product: an "AND" of literals (e.g. xy'z, a'bcd')
Cube: a product (another equivalent name)
Minterm: a product including a literal for every input of the function
Example: If a function has 3 inputs, A/B/C, then }\mp@subsup{A}{}{\prime}B\mp@subsup{C}{}{\prime}\mathrm{ is a minterm, but }\mp@subsup{A}{}{\prime}C\mathrm{ is not.
A minterm is also an input vector or combination (i.e. corresponds to a single row in the truth table)
ON-set minterm: minterm where the function is 1
OFF-set minterm: minterm where the function is 0
DC-set minterm: minterm where the function is DC (-)
Implicant: a cube/product which contains no OFF-set minterm (i.e. O value)
Prime Implicant (PI, prime): a maximal implicant (i.e. it is contained in no larger implicant)
Essential Prime Implicant (essential): a prime which contains at least one ON-set minterm (i.e. 1 value)
    which is not contained by any other prime
Sum-of-products (SOP, disjunctive normal form):
    a sum of products ("AND-OR" 2-level circuit)
Cover: a set of primes (SOP) containing all the ON-set minterms (1 points) of a function
Complete Sum: a cover containing all possible prime implicants of the function
```


Review: 2-Level Logic Minimization Problem

The 2-Level Logic Minimization Problem: given a Boolean function f
(i) Find a minimum-cost set of prime implicants which "covers" (i.e. contains) all ON-set minterms -- (... and possibly some DC-set minterms)

Or, equivalently:
(ii) Find a minimum-cost cover F of function f

2-Level Logic Minimization: Example

Solution \#2: Subset of Primes = 4 Products (AND gates)

Locally sub-optimal solution
"Redundant Cover" = can remove a product and still have legal cover

Exact 2-Level Logic Minimization: Quine-McCluskey (QMI Method

Quine-McCluskey Method: Examples

Example \#1: $f(A, B, C, D)=m(0,4,5,11,15)+d(2,6,9)$
[$m=O N$-se \dagger minterms, $d=D C$-set minterms]

Quine-McCluskey Method: Examples

Example \#1 (cont.)

Generate all prime implicants

Quine-McCluskey Method: Examples

Example \#2: $f(A, B, C)=m(0,1,2,6)+d(5)$
[$m=O N$-set minterms, $d=D C$-set minterms $]$

Quine-McCluskey Method: Examples

Example \#2: $f(A, B, C)=m(0,1,2,6)+d(5)$ [$m=$ ON-set minterms, $d=D C$-set minterms]

* $=$ distinguished minterm

Prime Implicant Table

= essential prime

Initial PI Table

Quine-McCluskey Method: Examples

Example \#2: $f(A, B, C)=m(0,1,2,6)+d(5)$
[$m=$ ON-set minterms, $d=$ DC-set minterms]

$\bigcirc=$ essential prime

Initial PI Table

Reduced PI Table (a)

Approach: remove \& save essential p2, and delete intersecting rows.

Quine-McCluskey Method: Examples

Example \#2: $f(A, B, C)=m(0,1,2,6)+d(5)$
[$m=$ ON-set minterms, $d=D C$-set minterms]

Reduced PI Table (a)
prime implicants

Reduced PI Table (b)

- column p1 'column-dominates’ column p3
- column p1 'column-dominates' column p4

Quine-McCluskey Method: Examples

Example \#2: $f(A, B, C)=m(0,1,2,6)+d(5)$
[$m=$ ON-set minterms, $d=D C$-set minterms]

O= secondary essential prime

Approach: remove \& save secondary essential p1, and delete intersecting rows.
... empty table: nothing left to cover.

Reduced PI Table (b)
Final solution: \{p1,p2\}

Quine-McCluskey Method: Examples

Example \#3: $f(A, B, C)=m(0,2,3,4,5,7)$
[$m=O N$-set minterms, $d=D C$-set minterms]

More complex example: illustrates (i) no reduction possible,
and (ii) resulting "cyclic core" and (ii) resulting "cyclic core"

FOR EXACT SOLUTION: can use Petrick's Method (or more advanced techniques) SEE QUINE-MCCLUSKEY HANDOUT

