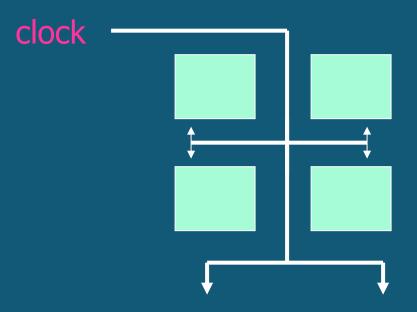
Asynchronous and GALS Design: Overview and Recent Advances

Prof. Steven M. Nowick nowick@cs.columbia.edu


Department of Computer Science Columbia University New York, NY, USA

Computer Systems Laboratory Presentation October 24, 2016 (NY, NY)

Introduction

Synchronous vs. Asynchronous Systems?

Synchronous Systems: use a global clock
entire system operates at fixed-rate
uses "centralized control"

Introduction (cont.)

Synchronous vs. Asynchronous Systems? (cont.)
 * Asynchronous Systems: no global clock
 * components can operate at varying rates
 * communicate locally via "handshaking"
 * uses "distributed control"

"handshaking
interfaces"
(channels)

Trends and Challenges

Trends in Chip Design: next decade

* International Technology Roadmap for Semiconductors (ITRS)

Unprecedented Challenges:

- * complexity and scale (= size of systems)
- * clock speeds
- * power management
- * reusability & scalability
- * reliability
- * "time-to-market"

Design becoming unmanageable using a centralized single clock (synchronous) approach....

1. Clock Rate:

- * 1980: several MegaHertz
- * 2016: 1-6 GigaHertz (and falling)

Design Challenge:

clock skew: clock must be near-simultaneous across entire chip
 Various optimization techniques: optimal clocking, skew-tolerant, resonant clocking, etc.

2. Chip Size and Density:

Total #Transistors per Chip: *exponential increase (Moore's Law)* * 1971: 2300 (Intel 4004 microprocessor) * 2016 and beyond: 1-5 billion+

Design Challenges:

* system complexity, design time, clock distribution

3. Power Consumption

* Low power: ever-increasing demand

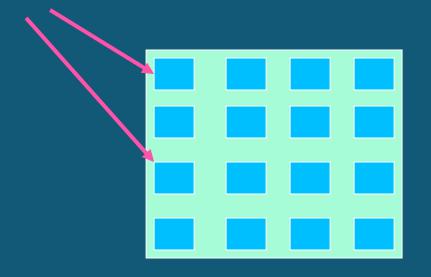
- * consumer electronics: battery-powered
- * high-end processors: avoid expensive fans, packaging

Design Challenge:

- * clock inherently consumes power continuously
- * "power-down" techniques: add complexity, only partly effective

4. Time-to-Market, Design Re-Use, Scalability

Increasing pressure for faster *"time-to-market"*. Need:


- * reusable components: "plug-and-play" design
- # <u>flexible interfacing</u>: under varied conditions, voltage scaling
- scalable design: easy system upgrades

Design Challenge: mismatch with central fixed-rate clock

5. Current/Future Trends: "Mixed Timing" Domains

Chips themselves becoming *distributed systems....*

* contain many sub-regions, operating at different speeds:

Design Challenge: breakdown of single centralized clock control

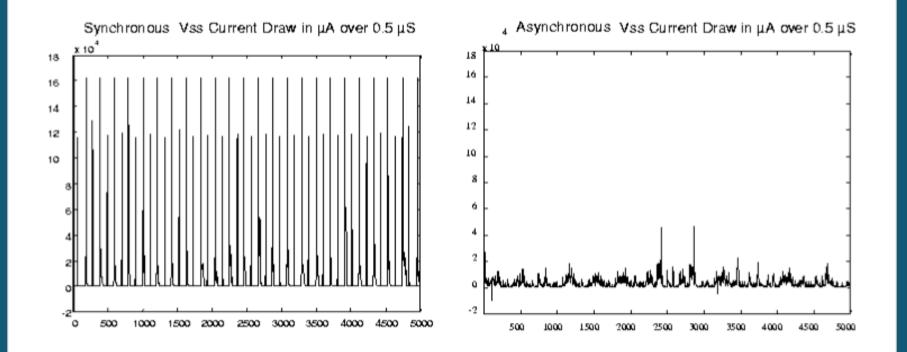
Asynchronous Design: Potential Advantages

Lower Power

* <u>no clock</u>

- ∗ → components inherently use dynamic power only "on demand"
- ∗ → no global clock distribution
- ★ → effectively provides <u>automatic clock gating</u> at arbitrary granularity

Robustness, Scalability, Modularity: "Lego-like" construction


- * <u>no global timing</u>: plug-and-play design
 - ★ → "mix-and-match" variable-speed components, different block sizes
 - ∗ → supports dynamic voltage scaling
- ∗ modular design style → "object-oriented"

Higher Performance (... sometimes) * not limited to "worst-case" clock rate

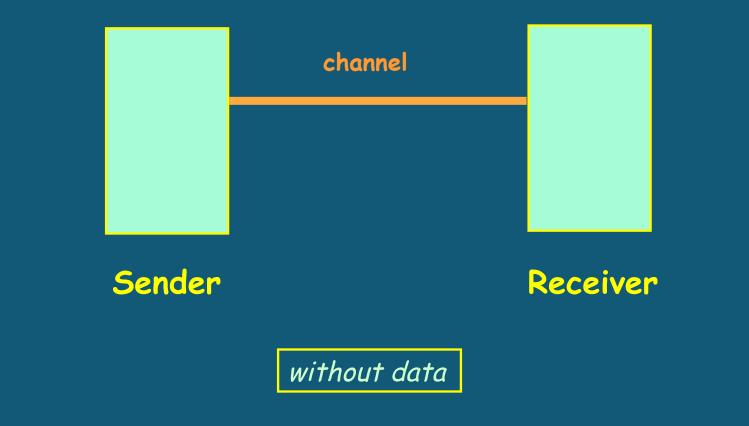
"Demand- (Data-) Driven" Operation

* instantaneous wake-up from standby mode

Example: Current Comparison – 80c51 Microcontroller

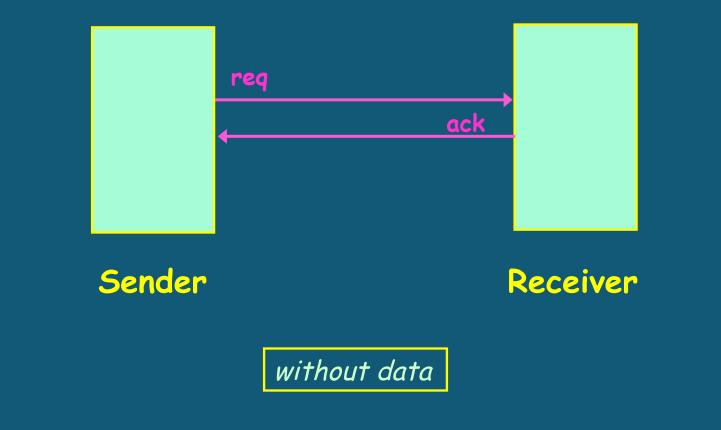
(Philips Semiconductors, 2000)

J. Kessels, T. Kramer, G. den Besten, A Peeters, and V. Timm, "Applying Asynchronous Circuits in Contactless Smart Cards," IEEE Async-Symposium (2000)

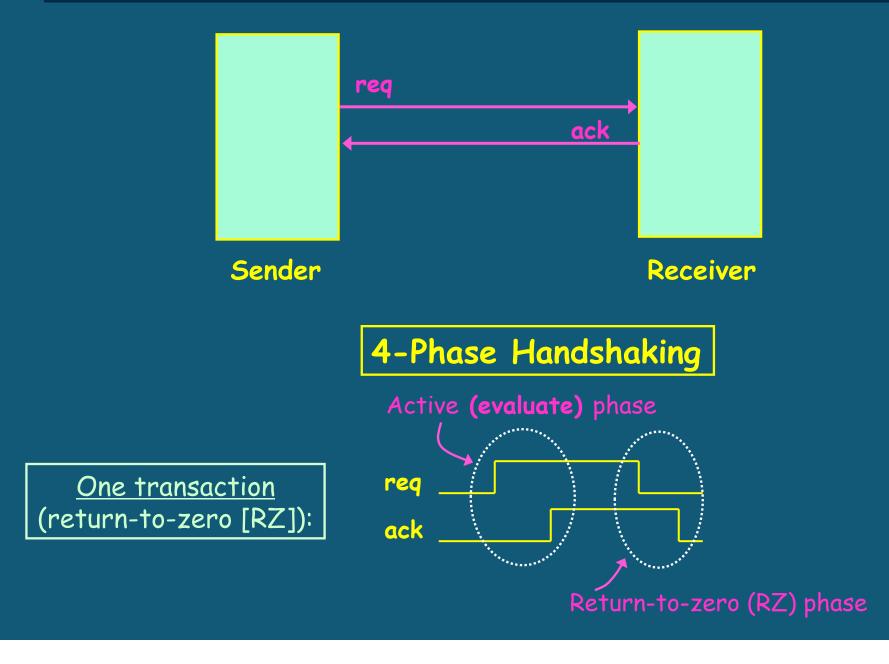

Potential Targets

Large variety of asynchronous design styles

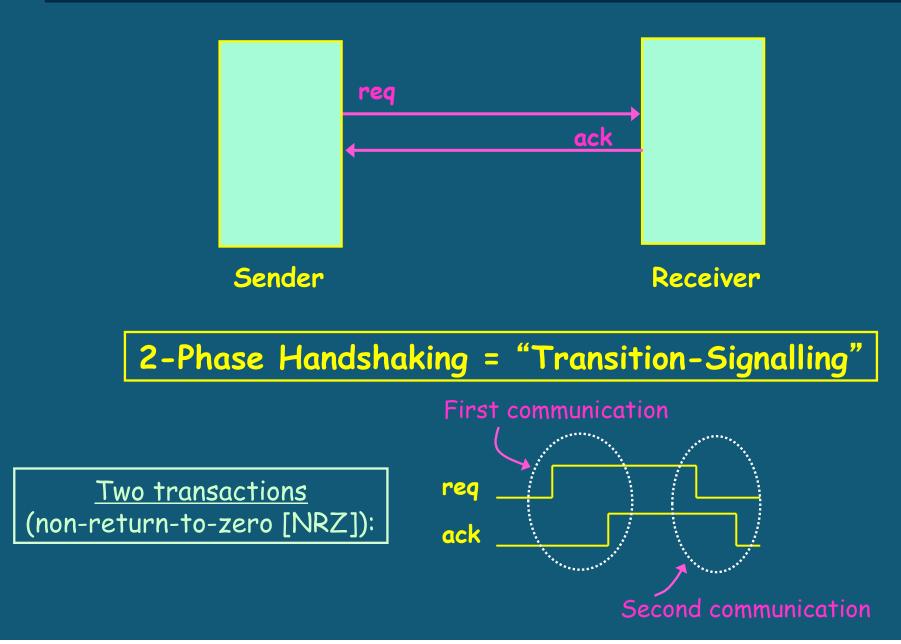
- * Address different points in "design-space" spectrum...
 - * extreme timing-robustness:
 - * supports unknown transmission times, arbitrary inter-bit skews
 - * <u>PVT variation tolerant:</u> providing near "delay-insensitive (DI)" operation
 - * ultra-low power, energy:
 - * <u>"on-demand" operation</u>, instant wakeup
 - * sub-/near-threshold benefits: J. Rabaey, K. Roy, S. Nowick/M.Seok
 - * ease-of-design/moderate performance/low EMI (electro-magnetic interference)
 - * e.g. goal at Philips Semiconductors
 - * very high-speed: asynchronous pipelined systems
 - * ... comparable throughput to high-end synchronous design
 - * with added benefits: lower system latency, support variable I/O rates
 - * modular heterogeneous systems: integrate clock domains via async
 - * "GALS-style" (globally-async/locally-sync)
 - * use in emerging technologies: QCA, CNT, nano-magnetics, etc.


Overview: Asynchronous Communication

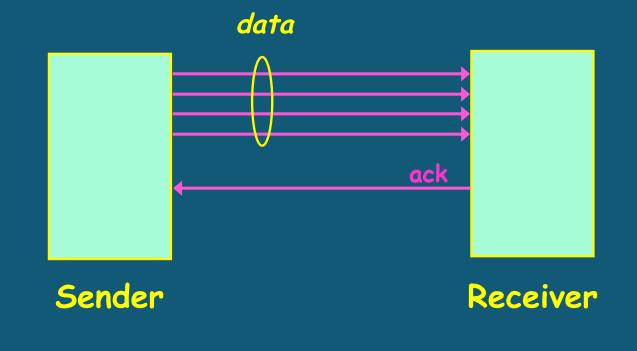
Components usually communicate & synchronize on <u>channels</u>



Overview: Signalling Protocols


<u>Communication channel:</u> usually instantiated as <u>2 wires</u>

Overview: Signalling Protocols



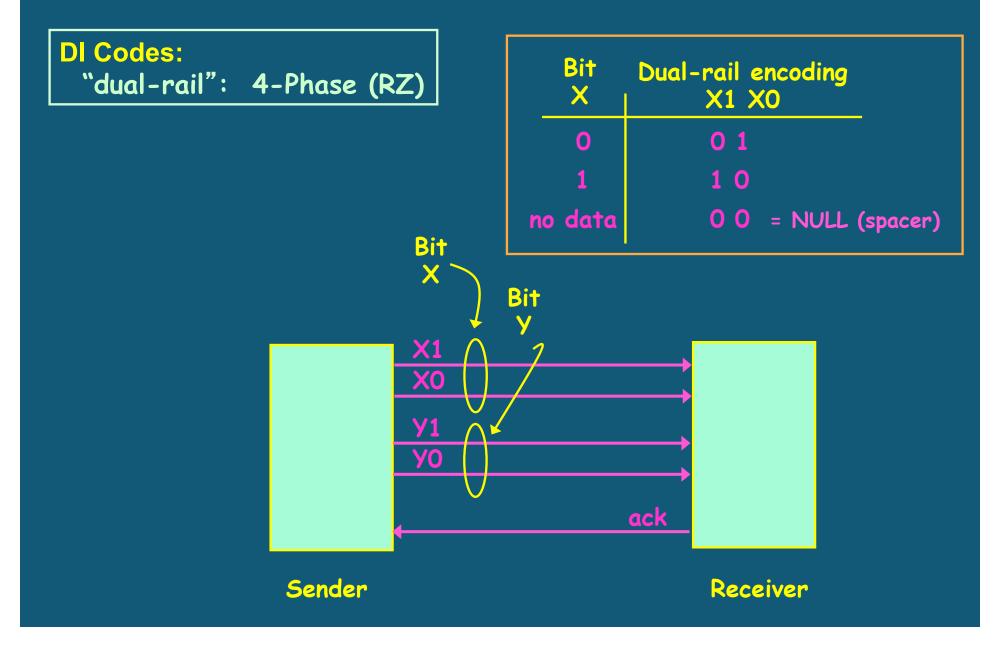
Overview: Signalling Protocols

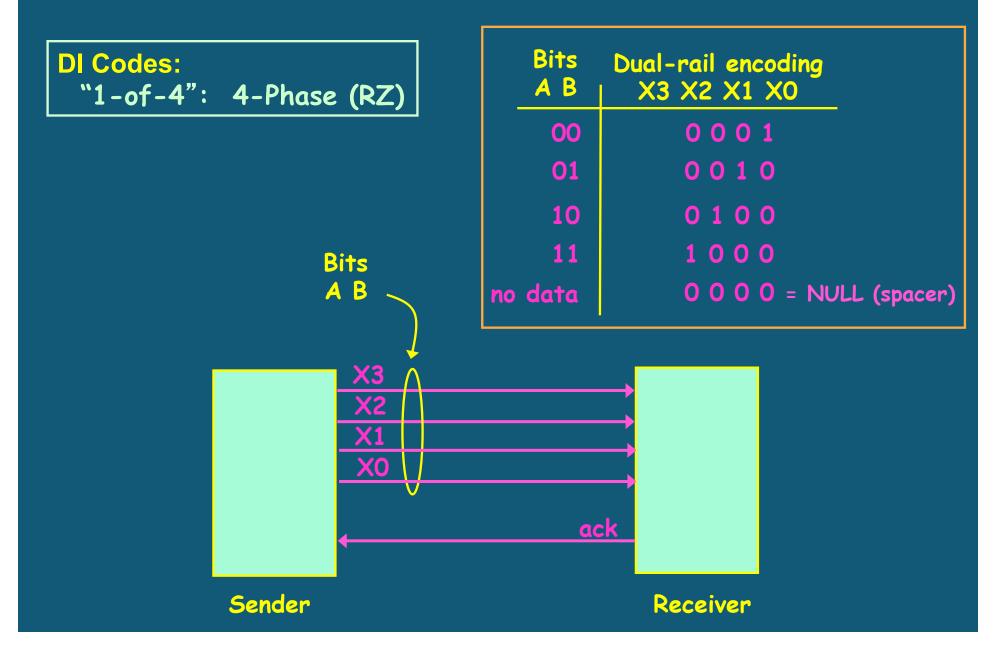
Overview: How to Communicate Data?

Data channel: replace "req" by (encoded) data bits - ... still use 2-phase or 4-phase protocol

A variety of asynchronous data encoding styles:

- * Two key classes: (i) "DI" (delay-insensitive) or (ii) "timing-dependent"
- * ... each can use *either* a <u>2-phase</u> or <u>4-phase protocol</u>

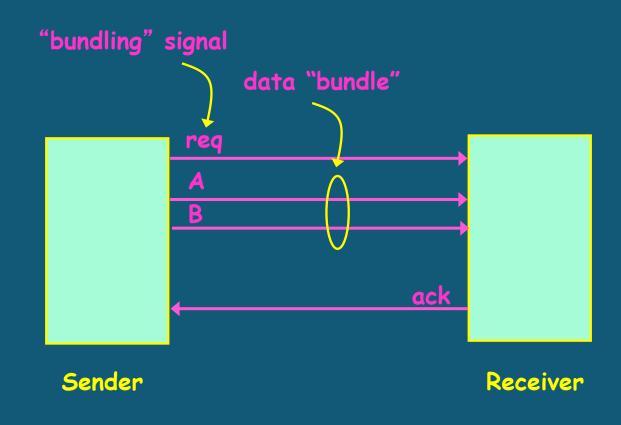

<u>DI Codes</u>: provides timing-robustness \rightarrow to arbitrary bit skew, input arrival time, etc.


- # 4-phase (RZ) protocols:
 - * dual-rail (1-of-2): widely used!
 - * 1-of-4
 - * m-of-n

* 2-phase (NRZ) protocols:

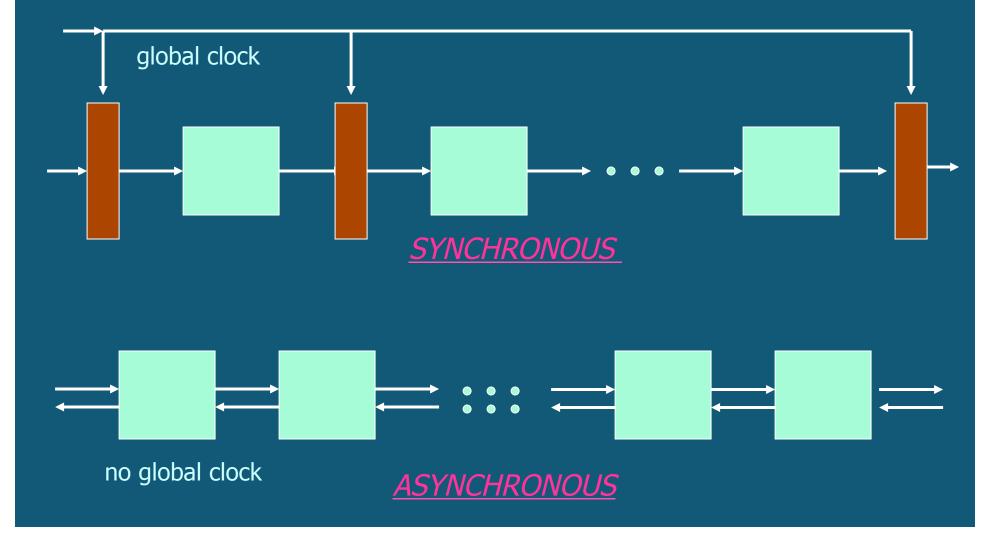
- * transition-signaling (1-of-2)
- * LEDR (1-of-2) ["level-encoded dual-rail"] [Dean/Williams/Dill, Adv. Research in VLSI '91]
- * LETS (1-of-4) ["level-encoded transition-signalling"]

[McGee/Agyekum/Mohamed/Nowick IEEE Async Symp. '08]

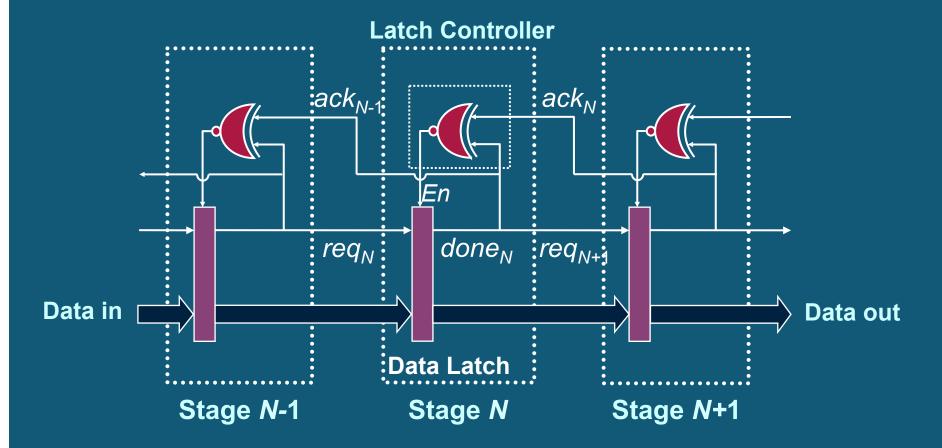


More advanced DI codes:

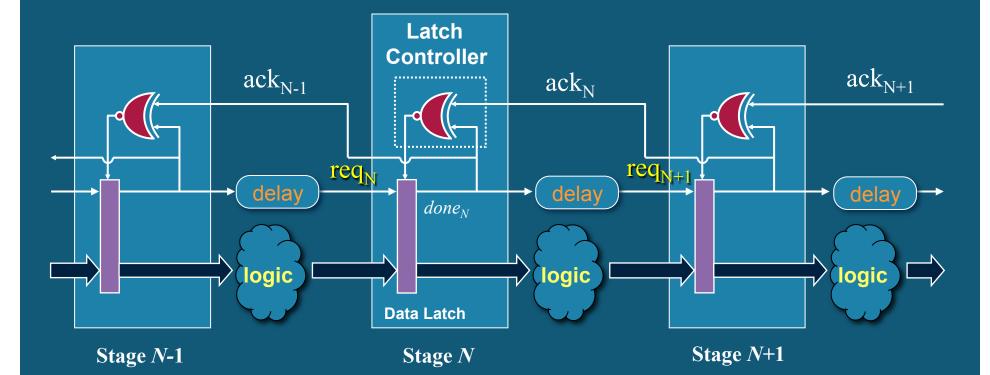
- * M-of-N codes: 3-of-6, 2-of-7, etc.
 - * Provide better coding efficiency + dynamic power
 - * Used in U. of Manchester "Spinnaker" Project neuromorphic processors
- * "DI Bus-Invert" codes: [Agyekum/Nowick DATE-11]
 - * Provide <u>better coding efficiency</u> + <u>dynamic power</u>
- * "Zero-Sum" codes: [Agyekum/Nowick DATE-10, IEEE TVLSI-12]
 - * Provide <u>fault tolerance</u> (error detection/correction)
- * "LETS" codes: 2-phase [McGee/Agyekum/Mohamed/Nowick Async-08]
 - Provide <u>better dynamic power</u> + <u>higher throughput</u>
 - * Used in Stanford "Neurogrid" Project neuromorphic processors


Single-Rail "Bundled Data" -- with timing constraints

Uses <u>synchronous single-rail data</u> (potentially glitchy!) + local <u>worst-case matched delay</u>


High-Speed Asynchronous Pipelines

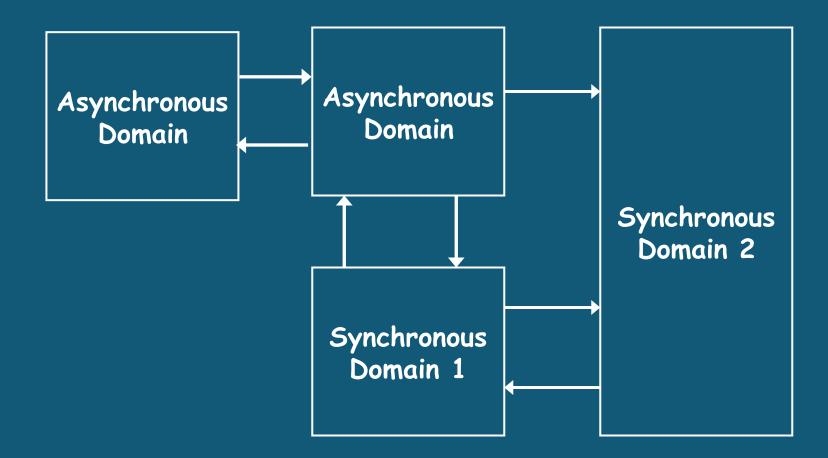
"<u>PIPELINED COMPUTATION"</u>: like an assembly line


MOUSETRAP: A Basic FIFO (no computation)

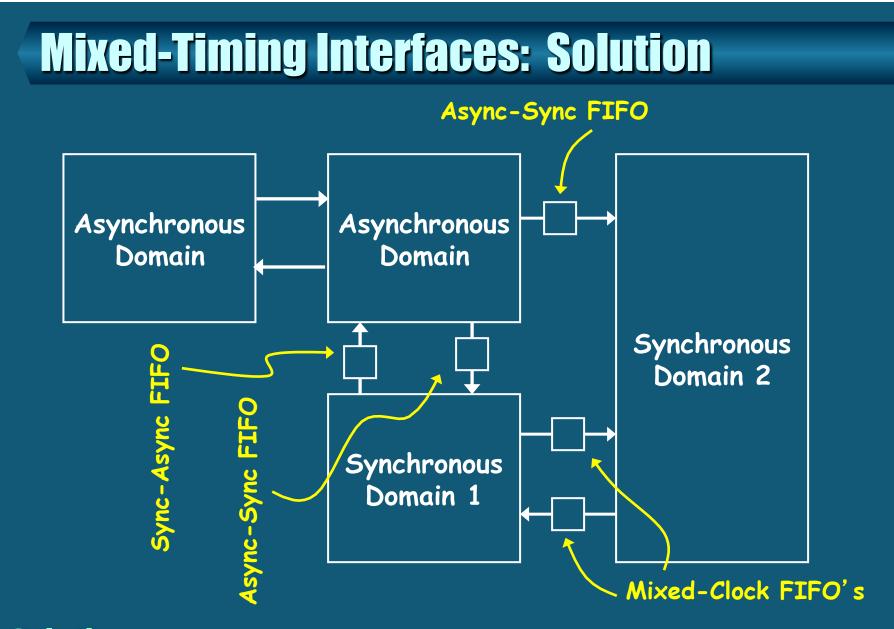
Stages communicate using *transition-signaling* (2-*phase*):

<u>Features</u>: standard cell design, <u>single D-latch register</u> per stage [Singh/Nowick, IEEE Trans. on VLSI Systems (June 2007)., ICCD (2001)]

"MOUSETRAP" Pipeline: adding computation



Function Blocks: use "synchronous" logic blocks (not hazard-free!) + a local "matched delay" (req)


"Bundled Data" Requirement (1-sided):

* Each req must arrive <u>after</u> data inputs valid and stable

Mixed-Timing Interfaces: Challenge

Goal: provide low-latency communication between "timing domains" **Challenge:** avoid synchronization errors

Solution: insert mixed-timing FIFO's ⇒ provide safe data transfer ... developed complete family of mixed-timing interface circuits [Chelcea/Nowick, IEEE Design Automation Conf. (2001); IEEE Trans. on VLSI Systems v. 12:8, Aug. 2004]

Asynchronous Design: a Brief History...

Phase #1: Early Years (1950's-early 1970's)

- * Leading processors: Illiac, Illiac II (U. of Illinois), Atlas, MU-5 (U. of Manchester)
- * Macromodules Project: plug-and-play design (Washington U., Wes Clark/C. Molnar)
- Commercial graphics/flight simulation systems: LDS-1 (Evans & Sutherland, C. Seitz)
- * Basic theory, controllers: Huffman, Unger, McCluskey, Muller

Phase #2: The Quiescent Years (mid 1970's-early 1980's)

* Advent of VLSI era: leads to synchronous domination and major advances

Phase #3: Coming of Age (mid 1980's-late 1990's)

- * Re-inventing the field:
 - * correct new methodologies, controllers, high-speed pipelines, basic CAD tools
 - * initial industrial uptake: Philips Semiconductors products, Intel/IBM projects
 - * first microprocessors: Caltech, Manchester Amulet [ARM]

Phase #4: The Modern Era (early 2000's-present)

Leading applications, commercialization, tool development, demonstrators

1. Philips Semiconductors: low-/moderate-speed embedded systems

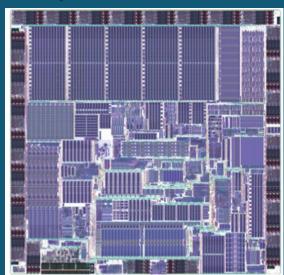
- * Wide commercial use: >700 million async chips (mostly 80c51 microcontrollers)
 - * consumer electronics: *pagers, cell phones, smart cards, digital passports, automotive*
 - * commercial releases: 1990's-2000's

* Benefits (vs. sync):

- * *3-4x* lower power (and lower energy consumption/op)
- * 5x lower peak currents
- * much lower "electromagnetic interference" (EMI) no shielding of analog components
- * correct operation over wide supply voltage range
- instant startup from stand-by mode (no PLL's)

* **Complete commercial CAD tool flow:** synthesis/testing, design-space exploration

- * "Tangram": Philips (late 1980' s-early 2000' s)
- * "Haste": Handshake Solutions (incubated spinoff, early-late 2000's)

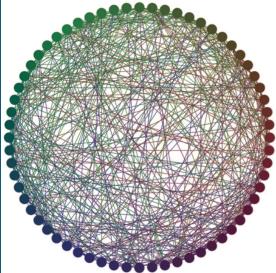

1. Philips Semiconductors (cont.)

- * Synthesis strategy: syntax-directed compilation
 - starting point: concurrent HDL (Tangram, Haste)
 - * <u>2-step synthesis:</u>
 - * **front-end:** HDL spec => intermediate netlist of concurrent components
 - * <u>back-end</u>: each component => standard cell (... then physical design)
 - Integrated flow with Synopsys/Cadence/Magma tools
 - * +: fast, 'transparent', easy-to-use
 - * -: few optimizations, low/moderate-performance only

2. Fulcrum Microsystems/Intel: high-speed Ethernet switch chips

- Async start-up out of Caltech → now Intel's Switch & Router Division (SRD) (2011)
 (2011)
- * Target: low system latency, extreme functional flexibility
- Intel's FM5000-6000 Series (~2013 release)
 - * 72-port 10G Ethernet switch/router
 - * Very low cut-through latency: 400-600ns
 - * <u>90% asynchronous</u> \rightarrow external synchronous interfaces
 - * 1.2 billion transistors: largest async chip ever manufactured (at release time)
 - * > 1 GHz asynchronous performance (65 nm TSMC process)
 - * CAD flow:
 - * semi-automated, incl. spec language (CAST)

*M. Davies, A. Lines, J. Dama, A. Gravel, R. Southworth, G. Dimou and P. Beerel, "A 72-Port 10G Ethernet Switch/Router Using Quasi-Delay-Insensitive Asynchronous Design," IEEE Async-Symposium (2014)



3. Neuromorphic Chips: IBM's "TrueNorth" (Aug. 2014)

- Developed out of DARPA's SyNAPSE Program
- Massively-parallel, fine-grained neuromorphic chip
 - * Fully-asynchronous chip! \rightarrow neuronal computation (bundled data) + interconnect (DI)
 - * IBM's largest chip ever: <u>5.4 billion transistors</u>
 - Models 1 million neurons/256 million synapses → contains 4096 neurosynaptic cores
 - * ... MANY-CORE SYSTEM!
 - * Extreme low energy: 70 mW for real-time operation \rightarrow 46 billion synaptic ops/sec/W
 - Asynchronous motivation: extreme scale, high connectivity, power requirements, tolerance to variability

Example network topology: showing only 64 cores (out of 4096) [IBM, 2014*]

*P.A. Merolla, J.V. Arthur, et al., "A Million Spiking-Neuron Integrated Circuit with a Scalable Communication Network and Interface," Science, vol. 345, pp. 668-673 (Aug. 2014) [COVER STORY]

- **3. Neuromorphic Chips:** Other Recent Async/GALS Processors
 - a. <u>U. of Manchester (UK)</u>: SpiNNaker Project, ~2005-present (S. Furber et al.)
 - # GALS systems: many-core ARM-based systems + async NoC's: single-chip/multi-chip

b. <u>Stanford University</u>: Neurogrid Project (Brains in Silicon) (K. Boahen et al.)

- Uses analog neurons + async digital synapses (interconnect)
- Scientific American (May 2005) cover story
- Proceedings of the IEEE (May 2014)

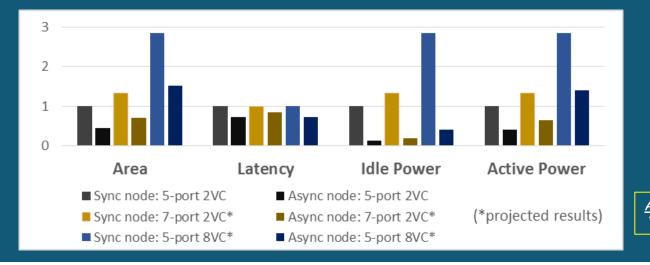
 \rightarrow uses our delay-insensitive "LETS" codes for robust inter-neuron communication

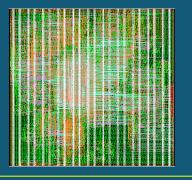
c. Intel Labs (Hillsboro, OR): new research project (Kshitij Bhardwaj [2006])

Each uses robust async NoC's to integrate massively-parallel many-core system

4. STMicroelectronics: Platform 2012* (P2012)

- * Highly-reconfigurable accelerator-based many-core GALS architecture
- * Entirely asynchronous NoC: enables fine-grain power- & variability-management
- * First prototype: delivered 80 GOPS perfomance with only 2W power consumption
- * Has evolved into the company's "STHORM" Platform (2014)


*L. Benini et al., "P2012: Building an Ecosystem for a Scalable, Modular and High-Efficiency Embedded Computing Accelerator," Proc. ACM/IEEE DATE Conference (2012)


5. Columbia/AMD Research: high-performance/low-energy NoC's

- * Ongoing collaboration w/our group (2015-): under DOE "Exascale Project"
 - Weiwei Jiang: project lead (6 month internship)
- * Target: implement async NoC switch in advanced industrial 14nm FinFET library
 - * <u>Application</u>: system configuration + power/performance monitoring (GPU/CPU chips)
 - * Uses new async VC approach [credit-based]
 - Initial tool flow: harness sync design validation + physical design flow (some manual)

* Experimental results (*pre-layout*): direct comparison to AMD commercial NoC

- sync: uses fine-grain clock gating
- * async: 55% less area, 28% lower latency, power savings = 88% (idle)/58% (active)

<u>Actual layout for proposed async router:</u> Weiwei Jiang (Columbia)/Greg Sadowski (AMD)

6. Computational Units/Embedded Subsystems

(a) Fast Huffman Decoder for Compressed-Code Embedded Processors

* Columbia/Princeton collaboration [1995-97] – S. Nowick/A. Wolfe

- * For compressed memory storage: decompress on-the-fly during cache refill
- * Async decoder: optimized for average-case Huffman codes (variable processing rate)

 <u>higher throughput than state-of-art synchronous decoders at the time</u> (+ low area)
 M. Benes, S.M. Nowick, A. Wolfe, "A Fast Asynchronous Huffman Decider for Compressed Code Embedded Processors," Proc. of IEEE Async-98 Symposium

(b) Floating-Point Adder

- * Cornell Group: Sheikh/Manohar
- Exploits data-dependent optimization, micro-level concurrency
- * Leading combination of performance and energy-efficiency

B.R. Sheikh and R. Manohar, "An Operand-Optimized Asynchronous IEEE 754 Double-Precision Floating-Point Adder," Proc. of IEEE Async-10 Symposium.

(c) Laser Space Measurement Chip (Columbia joint w/NASA Goddard [2006-2008])

- * For "time-of-flight" measurement in science missions (laser altimers, mass spectrometers)
- * Async design: significantly lower power + area vs. NASA-deployed synchronous chip
- Meets all performance targets, eliminates high-speed sampling clock

7. Emerging Technologies/New Paradigms

- # Ultra-Low Energy: sub-threshold/near-threshold computing
 - Async is highly-robust to timing variability (PVT)
 - * Key results: Rabaey's group (UCB), Kaushik Roy's group (Purdue), Nowick/Seok (CU)
- * Energy Harvesting
 - * Async "event-driven" logic, adapts to highly-variable power availability
 - * Christmann/Beigne (CEA-LETI): <u>40% power efficiency gain vs. synchronous</u>
- * Continuous-Time DSP's (CT-DSP's)
 - Nowick/Tsividis collaboration [2010-2015]
 - * Variable sampling-rate DSP's: avoids aliasing, highly reusable, low energy
- * Handling Extreme Environments: space, terrestrial
 - * E.g. support full operation over 400° C temperature range
- * Use with Emerging Technologies
 - * Flexible electronics: bending material induces unpredictable and large delay variations
 - * (i) Seiko/Epson ACT11 microprocessor (ISSCC-05), (ii) Ogras group (ASU)
 - Nano-magnetics
 - Quantum cellular automata (QCA)

A Reading List

<u>Overview/survey articles: introduction to asynchronous/GALS design</u>

- M. Singh and S.M. Nowick, "Asynchronous Design Part 1: Overview and Recent Advances." *IEEE Design and Test Magazine*, vol. 22:3, pp. 5-18 (May/June 2015).
- M. Singh and S.M. Nowick, "Asynchronous Design Part 2: Systems and Methodologies." *IEEE Design and Test Magazine*, vol. 22:3, pp. 19-28 (May/June 2015).

Our asynchronous/GALS network-on-chip (NoC) research:

1. Basic 5-ported switch design + semi-automated tool flow:

A. Ghiribaldi, D. Bertozzi and S.M. Nowick, "A Transition-Signaling Bundled Data NoC Switch Architecture for Cost-Effective GALS Multicore Systems." In Proceedings of ACM/IEEE Design, Automation and Test in Europe Conference (DATE-13), March 2013. Best Paper Finalist.

2. Support for virtual channels (VC's):

G. Miorandi, A. Ghiribaldi, S.M. Nowick and D. Bertozzi, "Crossbar Replication vs. Sharing for Virtual Channel Flow Control in Asynchronous NoCs: a Comparative Study." *In Proceedings of IFIP/IEEE VLSI-SoC Conference*, October 2014.

3. N-way asynchronous arbiters:

G. Miorandi, D. Bertozzi and S.M. Nowick, "Increasing Impartiality and Robustness in High-Performance N-Way Asynchronous Arbiters." *In Proceedings of IEEE International Symposium on Asynchronous Circuits and Systems (Async-15),* May 2015. *Best Paper Finalist.*

4. Performance acceleration:

W. Jiang, K. Bhardwaj, G. Lacourba and S.M. Nowick, "A Lightweight Early Arbitration Method for Low-Latency Asynchronous 2D-Mesh NoC's." In *Proceedings of ACM/IEEE Design Automation Conference (DAC-15)*, June 2015.

5. Support for efficient multicast:

K. Bhardwaj and S.M. Nowick, "Achieving Lightweight Multicast in Asynchronous Networks-on-Chip Using Local Speculation." In *Proceedings of ACM/IEEE Design Automation Conference (DAC-16)*, June 2016.