
426 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 2, NO. 4, DECEMBER 1994

Precomputation-Based Sequential
Logic Optimization for Low Power

Mazhar Alidina, JosC Monteiro, Srinivas Devadas, Member, IEEE,
Abhijit Ghosh, Member, IEEE, and Marios Papaefthymiou

Abstract- We address the problem of optimizing logic-level
sequential circuits for low power. We present a powerful se-
quential logic optimization method that is based on selectively
precomputing the output logic values of the circuit one clock cycle
before they are required, and using the precomputed values to
reduce internal switching activity in the succeeding clock cycle.
We present two different precomputation architectures which
exploit this observation. The primary optimization step is the
synthesis of the precomputation logic, which computes the output
values for a subset of input conditions. If the output values can be
precomputed, the original logic circuit can be “turned ofl” in the
next clock cycle and will have substantially reduced switching
activity. The size of the precomputation logic determines the
power dissipation reduction, area increase and delay increase rel-
ative to the original circuit. Given a logic-level sequential circuit,
we present an automatic method of synthesizing precomputation
logic so as to achieve maximal reductions in power dissipation.
We present experimental results on various sequential circuits.
Up to 75% reductions in average switching activity and power
dissipation are possible with marginal increases in circuit area
and delay.

I. INTRODUCTION

VERAGE POWER DISSIPATION has recently emerged A as an important parameter in the design of general-
purpose and application-specific integrated circuits. Optimiza-
tion for low power can be applied at many different levels of
the design hierarchy. For instance, algorithmic and architec-
tural transformations can trade off throughput, circuit area,
and power dissipation [4], and logic optimization methods
have been shown to have a significant impact on the power
dissipation of combinational logic circuits [121.

In CMOS circuits, the probabilistic average switching ac-
tivity of the circuit is a good measure of the average power

Manuscript received June 15, 1994; revised August 23, 1994. The work of
M. Alidina and S. Devadas was supported in part by the Defense Advanced
Research Projects Agency under Contract NOOO14-91-5-1698 and by a NSF
Young Investigator Award with matching funds from Mitsubishi and IBM
Corporation. The work of J. Monteiro was supported by the Portuguese “Junta
National de Investiga@o Cientifica e Tecnol6gica” under project “CiCncia”.

M. Alidina was with the Department of Electrical Engineering and Com-
puter Science, Massachusetts Institute of Technology, Cambridge, MA. He is
now with AT&T Bell Laboratories, Allentown, PA 18103 USA

J. Monteiro and S. Devadas are with the Department of Electrical Engineer-
ing and Computer Science, Massachusetts Institute of Technology, Cambridge,
MA 02139 USA.

A. Ghosh is with Mitsubishi Electric Research Laboratories, Sunnyvale,
CA 94086 USA.

M. Papaefthymiou is with the Department of Electrical Engineering, Yale
University, New Haven, CT 06520 LJSA.

IEEE Log Number 9406766.

dissipation of the circuit. Average power dissipation can thus
be computed by estimating the average switching activity.
Several methods to estimate power dissipation for CMOS com-
binational circuits have been developed (e.g., [6], [lo]). More
recently, efficient and accurate methods of power dissipation
estimation for sequential circuits have been developed [9],
[131.

In this paper, we are concerned with the problem of opti-
mizing logic-level sequential circuits for low power. Previous
work in the area of sequential logic synthesis for low power
has focused on state encoding [l I] and retiming [8] algorithms.
We present a powerful sequential logic optimization method
that is based on selectively precomputing the output logic
values of the circuit one clock cycle before they are required,
and using the precomputed values to reduce internal switching
activity in the succeeding clock cycle.

The primary optimization step is the synthesis of precompu-
tation logic, which computes the output values for a subset of a
input conditions. If the output values can be precomputed, the
original logic circuit can be “turned off’ in the next clock cycle
and will not have any switching activity. Since the savings in
the power dissipation of the original circuit is offset by the
power dissipated in the precomputation phase, the selection
of the subset of input conditions for which the output is
precomputed is critical. The precomputation logic adds to the
circuit area and can also result in an increased clock period.

Given a logic-level sequential circuit, we present an au-
tomatic method of synthesizing the precomputation logic so
as to achieve a maximal reduction in power dissipation. We
present experimental results on various sequential circuits. For
some circuits, 75% reductions in average switching activity are
possible with marginal increases in circuit area and delay.

In Section 11, we briefly describe our model for power dissi-
pation. In Section I11 we describe two different precomputation
architectures. Algorithms that syntheqize precomputation logic
so as to achieve power dissipation reduction are presented in
Section IV. In Section V we describe a method for multiple-
cycle precomputation. Experimental results are presented in
Section VI. In Section VI1 we describe additional precompu-
tation architectures which are the subject of ongoing research.

11. A POWER DISSIPATION MODEL

Under a simplified model, the energy dissipation of a CMOS
circuit i s directly related to the switching activity.

1063-82 10/94$04.00 0 1994 IEEE

ALlDlNA et ul.: SEQUENTIAL LOGIC OPTIMIZATION 421

-
- R2 -f

Fig. 1. Original Circuit.

In particular, the three simplifying assumptions are:
The only capacitance in a CMOS logic-gate is at the
output node of the gate.
Either current is flowing through some path from Voo
to the output capacitor, or current is flowing from the
output capacitor to ground.
Any change in a logic-gate output voltage is a change
from VDD to ground or vice-versa.

All of these are reasonably accurate assumptions for well-
designed CMOS gates [7], and when combined imply that the
energy dissipated by a CMOS logic gate each time its output
changes is roughly equal to the change in energy stored in the
gate's output capacitance. If the gate is part of a synchronous
digital system controlled by a global clock, it follows that the
average power dissipated by the gate is given by:

where P,,, denotes the average power, Clr,ad is the load
capacitance, Vdd is the supply voltage, TCyc is the global clock
period, and E(rransitions) is the expected value of the number
of gate output transitions per global clock cycle [101, or equiv-
alently the average number of gate output transitions per clock
cycle. All of the parameters in (1) can be determined from
technology or circuit layout information except E(transitions),
which depends on both the logic function being performed and
the statistical properties of the primary inputs.

Equation (1) is used by the power estimation techniques
such as [6], [lo] to relate switching activity to power dissi-
pation.

111. PRECOMPUTATION ARCHITECTLJRES

We describe two different precomputation architectures and
discuss their characteristics in terms of their impact on power
dissipation, circuit area and circuit delay.

A. First Precomputation Architecture

Consider the circuit of Fig. 1. We have a combinational
logic block A that is separated by registers RI and R2. While
RI and R2 are shown as distinct registers in Fig. 1 they could,
in fact, be the same register. We will first assume that block
A has a single output and that it implements the Boolean
function f .

In Fig. 2 the first precomputation architecture is shown. Two
Boolean functions g1 and 92 are the predictor functions. We
require:

Fig. 2. First precomputation architecture.

P

Fig. 3. Second precomputation architecture.

Therefore, during clock cycle t if either g1 or g2 evaluates to a
1, we set the load enable signal of the register R1 to be 0. This
means that in clock cycle t + 1 the inputs to the combinational
logic block A do not change. If g1 evaluates to a 1 in clock
cycle t, the input to register R2 is a 1 in clock cycle t+ I ,
and if g2 evaluates to a 1, then the input to register Rz is a 0.
Note that g1 and 9 2 cannot both be 1 during the same clock
cycle due to the conditions imposed by (2) and (3).

A power reduction in block A is obtained because for a
subset of input conditions corresponding to g1 + g2 the inputs
to A do not change implying zero switching activity. However,
the area of the circuit has increased due to additional logic
corresponding to 91, g2, the two additional gates shown in the
figure, and the two flip-flops marked FF. The delay between
R 1 and R 2 has increased due to the addition of the AND-
OR gate. Note also that g1 and g2 add to the delay of paths
that originally ended at R 1 but now pass through g1 or 92
and the NOR gate before ending at the load enable signal
of the register RI . Therefore, we would like to apply this
transformation on noncritical logic blocks.

The choice of g1 and g2 is critical. We wish to include as
many input conditions as we can in g1 and 9 2 . In other words,
we wish to maximize the probability of gl or g2 evaluating to
a 1. In the extreme case this probability can be made unity if
g1 = f and g2 = 7. However, this would imply a duplication
of the logic block A and no reduction in power with a twofold
increase in area! To obtain reduction in power with marginal
increases in circuit area and delay, g1 and g:! have to be
significantly less complex than f . One way of ensuring this is
to make g1 and g:! depend on significantly fewer inputs than
f. This leads us to the second precomputation architecture of
Fig. 3.

428 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 2, NO. 4, DECEMBER 1994

-

Xn-- A

I 1 - 1

!1

f In

Fig. 4. Second precomputation architecture for a finite state machine.

B. Second Precomputation Architecture

In the architecture of Fig. 3, the inputs to the block A have
been partitioned into two sets, corresponding to the registers
R1 and Rz. The output of the logic block A feeds the register
R3. The functions g1 and g2 satisfy the conditions of (2) and
(3) as before, but g1 and g2 only depend on a subset of the
inputs to f. If g1 or g2 evaluates to a 1 during clock cycle t, the
load enable signal to the register R2 is turned off. This implies
that the outputs of R2 during clock cycle t+ 1 do not change.
However, since the outputs of register R1 are updated, the
function f will evaluate to the correct logical value. A power
reduction is achieved because only a subset of the inputs to
block A change implying reduced switching activity.

As before, 91 and g2 have to be significantly less complex
than f and the probability of g1 + g2 begin a 1 should be
high in order to achieve substantial power gains. The delay
of the circuit between R1/R2 and R3 unchanged, allowing
precomputation of logic that is on the critical path. However,
the delay of paths that originally ended at R1 has increased.

The choice of inputs to g1 and g2 has to be made first, and
then the particular functions that satisfy (2) and (3) have to
be selected. Methods to perform this selection for this second
precomputation architecture are described in Section IV.

C. Precomputation for Finite State Machines

As mentioned in Section 111-A, these precomputation archi-
tectures are not restricted to pipeline circuits. We present in
Fig. 4 an example of precomputation for a finite state machine
using this second precomputation architecture.

D. An Example

We give an example that illustrates the fact that substantial
power gains can be achieved with marginal increases in circuit
area and delay. The circuit we are considering is a n-bit
comparator that compares two n-bit numbers C and D and
computes the function C > D. The optimized circuit with

Fig. 5. A comparator example.

precomputation logic is shown in Fig. 5. The precomputation
logic is as follows:

91 = C (n - 1) . D (n - 1)

g2 = C (n - 1) . D (n - 1)

Clearly, when g1 = 1, C is greater than D, and when g2 =
l , C is less than D. We have to implement

91 + 9 2 = c (n - 1) 8 o (n - 1)

where 8 stands for the exclusive-nor operator.
Assuming a uniform probability for the inputs', the proba-

bility that the XNOR gate evaluates to a 1 is 0.5, regardless of n.
For large n, we can neglect the power dissipation in the XNOR
gate, and therefore, we can achieve a power reduction of close
to 50%. The reduction will depend upon the relative power
dissipated by the vector pairs with C (n - 1) @ D (n - 1) = 1
and the vector pairs with C(n - 1) 18 D (n - 1) = 0. If we add
the inputs C(n - 2) and D(n - 2) to g1 and ,92 it is possible
to achieve a power reduction close to 75%.

Iv . SYNTHESIS OF PRECOMPUTATION LOGIC

A. Introduction

In this section, we will describe methods to determine the
functionality of the precomputation logic, and then describe
methods to efficiently implement the logic.

We will focus on the second precomputation architecture
(Section 111-B) illustrated in Fig. 3. In order to ensure that
the precomputation logic is significantly less complex than
the combinational logic in the original circuit, we will restrict
ourselves to identifying g1 and g2 such that they depend on a
relatively small subset of the inputs to the logic block A.

B. Precomputation and Observability Don 't-Cares

Assume that we have a logic function f (X), with X =
{xl,. . . , xn}, corresponding to block A of Fig. 1. Given that
the logic function implemented by block A is f, then the
observability don't-care set for input xi is given by:

'The assumption here is that each C(t) and D(z) has a 0.5 static probability
of being a 0 or a I .

ALIDINA et al.: SEQUENTIAL LOGIC OPTIMIZATION 429

where fzz and fz are the cofactors of f with respect to x,,
and similarly for 7. (The cofactors can be obtained simply by
setting z, to a 1 or o in f or 7.)

If we determine that a given input combination is in ODC,
then we can disable the loading of z, into the register since
that means that we do not need the value of z, in order to know
what the value of f is. If we wish to disable the loading of
registers . . ., x,,, we will have to implement the function

n

g = n ODCi
, = m i l

and use ij as the load enable signal for the registers corre-
sponding to z,+1,. . ., 5,.

For more details regarding observability don’t-cares the
reader is referred to [5] (p. 179).

C. Precomputation Logic

Let us now consider the architecture of Fig. 3. Assume that
the inputs 21,. . . ,E,, with m < n have been selected as
the variables that g1 and 92 depend on. We have to find g1
and 92 such that they satisfy the constraints of (2) and (3),
respectively, and such that prob(gl + g2 = 1) is maximum.

We can determine g1 and 92 using universal quantification
on f . The universal quant@cation of a function f with respect
to a variable :E, is defined as:

UZ%f = fx2 . fc
This gives all the combinations over the inputs 21, . . . , x,-1,
z,+1, . . . , x,, that result in f = 1 such that the value of 2,
does not matter.

Given asubset of inputs S = (21,. . . ,x,}, set D = X - S .
We can define:

U D f = UZ.,,+L ” ’ Uxnf

Theorem 4.1: 91 = f satisfies (2). Further, no function
h(xl,. . . , x,) exists such that prob(h = 1) > prob(g1 = 1)
and such that h = 1 + f = 1.

Pro08 By construction, if for some input combination
al , . . . , a, causes g1 (a l , a,) = 1, then for that combina-
tion of xl. . . . , x, and all possible combinations of variables
in x,+1, . . . , 5,f(al,a,, ,z,+1 ,... ,x,,) = 1.

We cannot add any minterm over zl, . . . , .c, to g1 because
for any minterm that is added, there will be some combination
of x,,,,1, . . . zn for which f(xl,. . . , 2,) will evaluate to a
0. Therefore, we cannot find any function h that satisfies (2)

0
Similarly, given a subset of inputs S , we can obtain a

and such that prob(h = 1) > prob(g1 = 1).

maximal 9 2 by:

We can compute the functionality of the precomputation
logic as g1 + 92.

Selecting a Subset of Inputs: Exact Method: Given a func-
tion f we wish to select the “best” subset of inputs S of
cardinality k . Given S , we have D = X - S and we compute
yl = U D ~ , g2 = U D ~ . In the sequel, we assume that the
best set of inputs corresponds to the inputs which result in

SELECT-INPUTS(f, IC):

/* f = function to precompute */
/* k = # of inputs to precompute with */
BEST-PROB = 0 ;
SELECTED-SET = Q ;

return(SELECTEDSET) ;

{

SELECT-RECUR(f, f, Q, X, (XI - k) ;

1

{
SELECT-RECUR(fa, fb , D , Q, 1):

i f (PI + IQ1 < 1)
ret urn ;

pT = prob(fa = 1) +prOb(fb = 1) ;
if(pr 5 BEST-PROB)

else if()Dl == I) {
ret urn ;

BESTPROB = pr ;

return ;
SELECTEDSET = X - D ;

1
choose zi E Q such that i is minimum ;
SELECT-RECUR(U q f a , uz,fb, D U s i , Q - si7 1) ;
SELECT-RECUR(fa, fb, D, Q - z;, 1) ;

return ;

Procedure to determine the optimal set of inputs.
1

Fig. 6.

prob(g1 +g2 = 1) being maximum for a given k . We know that
prob(gl+gZ = 1) = prob(gl = l)+prob(g~ = 1) since g1 and
g2 cannot both be 1 on the same input vector. The above cost
function ignores the power dissipated in the precomputation
logic, but since the number of inputs to the precomputation
logic is significantly smaller than the total number of inputs
this is a good approximation.

In the sequel we describe a branching algorithm that deter-
mines the optimal set of inputs maximizing the probability of
the 91 and 92 functions. This algorithm is shown in pseudocode
in Fig. 6.

The procedure SELECTlNPUTS receives as arguments
the function f and the desired number of inputs IC to the
precomputation logic. SELECT-INPUTS calls the recursive
procedure SELECTBECUR with five arguments. The first
two arguments corresponds to the g1 and g2 functions, which
are initially f and 7. A variable is selected within the recursive
procedure and the two functions are universally quantified
with respect to the selected variable. The third argument D
corresponds to the set of variables that g1 and g2 do not depend
on. The fourth argument Q corresponds to the set of “active”
variables, which may be selected or discarded. Finally, the
argument I correspond to the number of variables that have
to be universally quantified in order to obtain g1 and 92 with
k or fewer inputs.

If (DI + IQ1 < I it means that we have selected too many
variables in the earlier recursions and we will not be able to
quantify with respect to enough input variables. The functions
g1 and g2 will depend on too many variables (> IC).

430 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 2, NO. 4, DECEMBER 1994

We calculate the probability of g1 + g2. If this probability
is less than the maximum probability we have encountered
thus far, we can immediately return because of the following
invariant which is true because f contains Uxtf.

p r o W x * f) = Prob(fz% . fz) L prob(f) Vzz, f
Therefore as we universally quantify variable3 from a given fa
and f b function pair the pr quantity monotonically decreases.

We store the selected set corresponding to the maximum
encountered probability.

Selecting a Subset of inputs: Approximate Method: The
worst-case running time of the exact method is exponential
in the number of input variables and, although we have a
nice pruning condition, there are many examples for which we
cannot use it. Thus we have also implemented an approximate
algorithm that looks at each input individually and chooses
the IC most promising inputs.

For each input we calculate:

p , = Prob(uz%f) + prob(Uz*f)

p , is the probability that we know the value of f without
knowing the value of IC,. If p , is high then most of the time
we do not need z, to compute f . Therefore we select the IC
inputs corresponding to smaller values of p , .

Implementing the Logic: The Boolean operations of OR
and universal quantification required in the input selection
procedure can be carried out efficiently using reduced, or-
dered Binary Decision Diagrams (ROBDDs) [3]. We obtain a
ROBDD for the g1 +g2 function. A ROBDD can be converted
into a multiplexor-based network (see [l]) or into a sum-of-
products cover. The network or cover can be optimized using
standard combinational logic optimization methods that reduce
area [2] or those that target low power dissipation [12].

D. Multiple-Output Functions

In general, we have a multiple-output function f l , . . . , f m
that corresponds to the logic block A in Fig. 1. All the pro-
cedures described thus far can be generalized to the multiple-
output case.

The functions gl; and g2i are obtained using the equations
below.

where D = X - S as before. The function g whose comple-
ment drives the load enable signal is obtained as:

m

9 = n c g 1 i + m)
i= l

The function g corresponds to the set of input conditions where
the variables in S control the values of all the fi's regardless
of the values of variables in D = X - S.

Selecting a Subset of Outputs: Exact Method: We describe
an algorithm, which given a multiple-output function, selects
a subset of outputs and a subset of inputs so as to maximize
a given cost function that is dependent on the probability of

SELECT-OUTPUTS(F = {fi , ..., fm}, k):

/* F = multi-output function to precompute ' 1
I' k = # of inputs to precompute with ' 1
BEST-COST = 0 ;
SEL-OPSET = 6 ;
SELECT-ORECUR(6 , F , 1, k) ;
return(SEL-OPSET) ;

t

}

{
SELECT-ORECUR(G, H , proldG, k):

11 = gates(f - H)/totalgates x proldG ;
if(If 5 BEST-COST)

BEST-PROB = totalgates/gates(F - If) x BEST-COST ;
return ;

i f (G # d)
if(SELECT-INPUTS(G, k) == 4)

return ;
prG = BESTPROB ;
cost = prG x gates(G)/totalgates ;
if(cost > BEST-COST) {

BEST-COST = cost ;
SEL-OPSET = G ;

/* BEST-PROB is set in SELECT-INPUTS ' 1

1
choose f, E H such that i is minimum ;

SELECT_ORECUR(G, H - f,, prG, k) ;

return :

SELECT-ORECUR(G U f i , H - f;. p G , k) ;

}

Fig. 7. Procedure to determine the optimal set of outputs

the precomputation logic and the number of selected outputs.
This algorithm is described in pseudocode in Fig. 7.

The inputs to procedure SELECT-OUTPUTS are the
multiple-output function F , and a number k corresponding
to the number of inputs to the precomputation logic.

The procedure SELECT-ORECUR receives as inputs two
sets G and H, which correspond to the current set of outputs
that have been selected and the set of outputs which can be
added to the selected set, respectively. Initially, G = 4 and
H = F . The cost of a particular selection of outputs, namely
G, is given by prG x gates(F - H)/total-gates, where prG
corresponds to the signal probability of the precomputation
logic, gates(F - H) corresponds to the number of gates in the
logic corresponding to the outputs in G and not shared by any
output in H, and total-gates corresponds to the total number
of gates in the network (across all outputs of F) .

There are two pruning conditions that are checked for in
the procedure SELECT-ORECUR. The first corresponds to
assuming that all the outputs in H can be added to G without
decreasing the probability of the precomputation logic. This
is a valid condition because the quantity proldG in each
recursive call can only decrease with the addition of outputs
of G. We then set a lower bound on the probability of
the precomputation logic prior to calling the input selection
procedure. Optimistically assuming that all the outputs in H
can be added to G without lowering the precomputation logic
probability, we are not interested in a precomputation logic
probability for G that would result in a cost that is equal to
or lower than BEST-COST.

Logic Duplication: Since we are only precomputing a sub-
set of outputs, we may incorrectly evaluate the outputs that
we are not precomputing as we disable certain inputs during
particular clock cycles. If an output that is not being precom-

ALIDINA et al.: SEQUENTIAL LOGIC OPTIMIZATION 43 1

fl

f2

(a) Original Network

_. .
fl

f2

(b) Final Network
Fig. 8. Logic duplication in a multiple-output function.

puted depends on an input that is being disabled, then the
output will be incorrect.

The support of f , denoted as support(f) , is the set of all
variables xi that occur in f as IC; or E. Once a set of outputs
G c F and a set of precomputation logic inputs S c X have
been selected, we need to duplicate the registers corresponding
to (support (G) - S) n suppnrt(F - G). The inputs that are
being disabled are in support(G) - S. Logic in the F - G
outputs that depends on the set of duplicated inputs has to
be duplicated as well. It is precisely for this reason that we
maximize prG x gates(F - H)/total-gates rather than prG in
the output-selection algorithm. This way we are maximizing
the number of gates (logic corresponding to the outputs in G)
that will not switch when precomputation is possible but not
taking into account gates that are shared by the outputs in H ,
thus reducing the amount of duplication as much as possible.

An example of a multiple-output function where the regis-
ters and logic need to be duplicated is shown in Fig. 8.

The original network has outputs fl and f 2 and inputs
X I ! . . . , xq. The function fl depends on inputs XI,. . . ,Q and
the function f:! depends to inputs z3 and 2 4 . Hence, the two
outputs are sharing the input 2 3 . Suppose that the output-
selection procedure determines that f I is the best output to
precompute and that inputs 2 1 and x2 are the best inputs to
the precomputation logic. Therefore, just as in the case of a
single-output function, the inputs :c1 and LC:! feed the input
register, whereas, z:3 feeds the register with the load-enable
signal. However, since f 2 depends on ~3 and the register
with the load-enable signal contains stale values in some clock
cycles, we need to duplicate the register for 2 3 and the logic
from :c3 to f:!.

Selecting a Subset of Outputs: Approximate Method: Again
the exact algorithm is worst-case exponential in the number of
inputs plus number of outputs, thus we need an approximate
method to handle larger circuits. We designed an approximate
algorithm which is presented in pseudocode in Fig. 9.

SELECT-OUTPUTS-APPROX(F = {fi, . . . , fm}, k):
{

BEST-COST = 0 ;
foreach I, E X { /* Output selection */

foreach f, E F {
gJ = .fJ + ;

1
foreach f, E F {

G = {fJ} ;
H = F - ;
probG = prob(g,) ;
curr-cost = probG x gates(F - H)/totalgates;

/* Add any outputs that make the cost increase */
9 = g , ;
foreach fi E F {

G = G u { f i } ;
probG = prob(g . gr) ;
cost = probG x gates(F - H)/totalgates ;
if(cost > C U T T L O S t) {

C U T T L O S ~ = cost ;
9 ’ 9 . 9 1 ;

} else
G = G - { f r } ;

1
1
if(C U T T L O S ~ > BEST-COST) {

BEST-COST = CUTT-COS~ ;
SEL-OP-SET = G ;

1
foreach 5, E X {

g = 1 ;
foreach f, E SEL-OP-SET

PI = prob(g) i

1
/* Input selection */

9 = 9 (ur,fj t ur,’f;) ;

1
select the k z,’s corresponding to smaller p,’s

1
Fig 9 Procedure to determine a good set of outputs

In this algorithm we first select the set of outputs that will
be precomputed and then select the inputs that we are going
to precompute those outputs with. When we are selecting the
outputs we still do not know which inputs are going to be
selected, thus we select those outputs that seem to be the most
precomputable. Universally quantifying just one of the inputs,
we start with one output and compute the same cost function as
in the exact method, prG x gates(F - H)/total-gates. Then we
add outputs that make the cost function increase. We repeat
this process for each input. At the end we keep the set of
outputs corresponding to the maximum cost.

Once we have a set of promising outputs to precompute we
can use the approximate algorithm described in Section IV-C-
2 to select the inputs. This algorithm runs in polynomial time
in the number outputs times the number of inputs.

V. MULTIPLE CYCLE PRECOMPUTATION

A. Basic Strategy

It is possible to precompute output values that
required in the succeeding clock cycle, but required 2
clock cycles later.

are not
or more

432 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 2, NO. 4. DECEMBER 1994

Fig. IO. Multiple cycle precomputation

Consider the topology of Fig. IO. If the register outputs of
R3 are not used except to compute f , then we can precompute
the value of the function f using a selected set of inputs,
namely those corresponding to register 111. If f can be
precomputed to a 1 or a 0 for a set of input conditions, then for
these inputs we can turn off the load enable \ignal to R,. This
will reduce switching activity not only in logic block A, but
also in logic block B, because there will be reduced switching
activity at the outputs of R3 in the clock cycle following the
one where the outputs of R2 do not change.

B. Examples

We give examples illustrating multiple-cycle precomputa-
tion.

Consider the circuit of Fig. 11. The function f computes
(G + D) > (X + Y) in two clock cycles2. Attempting to
precompute G+ D or X + Y using the methods of the previous
section do not result in any savings because there are too
many outputs to consider. However, 2-cycle precomputation
can reduce switching activity by close to 12.5% if the functions
below are used.

~~

!/I = ('(71, - 1) . D (n - 1) . X (n - 1> ' Y(71 - 1)
_ _ _ _ ~

{ /2 = C (7 t - 1) ' D(71 - 1) . X(71 - 1) . Y(71 - I)

where g1 and Q, satisfy the constraints of (2) and (3), respec-
tively. Since proh(g1 + 9,) = & = 0.125, we can disable the
loading of registers C(71. - 2 : O) , D(71 - 2 : O), X (n - 2 : 0),
and I'(n,-2 : 0) 12.5% of the time, which results in switching
activity reduction. This percentage can be increased to over
45% by using C(TJ , - 2) through Y (71 - 2). We can additionally
use single-cycle precotnputation logic (as illustrated in Fig. 5)
to further reduce switching activity in the > comparator of
Fig. 1 1 .

Next, consider the circuit of Fig. 12. The multiple-output
function f computes MAX(C + D , X + Y) in two clock
cycles. We can use exactly the same g1 and g2 functions as
those immediately above, but 91 is used to disable the loading
of registers X(,n - 2 : 0) and Y(71 - 2 : 0), and 9 2 is used to
disable the loading of C (7 - 2 : 0) and D(,/j,- 2 : 0). We exploit
the fact that if we know that C + D > X + l', there is no need
to compute X + Y , and vice versa. Finally, we can implement
the MAX function as shown in Fig. 13, duplicate registers
and use single-cycle precomputation on the > operator (as
illustrated in Fig. 5) to achieve switching activity reduction.

' + in the figure stands for addition.

n

t-l
Fig. 1 1 , Adder-comparator circuit.

n
C-

D ~-

X-

Y-

n
0-

Fig. 12. Adder-maximum circuit.

.- R7 F 0

Do.
Fig. 13. Precomputation applied to maximum circuit.

VI. EXPERIMENTAL RESULTS

We first present results on datapath circuits such as carry-
select adders, comparators, and interconnections of adders and
comparators in Table I. In all examples the precomputation
architecture of Fig. 3 was used and all the outputs of each
circuit were precomputed. For each circuit. the number of

ALIDINA el ab: SEQUENTIAL LOGIC OPTIMIZATION

('iieuit

apex2

cht

433

Original Prernmpute Logic Optimized

I 0 L i l s Levels Power I ~ 0 Lits Levels Power % Red

39 3 395 I I 2387 4 I 3 4 I 13% 42

47 36 167 3 I835 1 ' J5 I I 1537 ~ 16

TABLE I
POWER REDUCTIONS FOR DATAPATH CIRCUITS

cni l3R'

cnli5n*

curb '

m a l 6 350 9

d d m a x l 6 3090 9
__

mal6 975 10

6 R 35 2 286 3 8 3 I 153 1 4 i

21 I 61 4 1-14 I I I I 574 23

16 4 ($2 5 620 5 4 10 I 353 43

Precompute Logic Optimized

'ower Bits Literals Levels Power % Red

cps

d a h

duke2

-
6941

-
1744

737[
-

11 109 l l U 8 9 3726 i 101 , 2R ' .I 2191 4 1

i i 16 3067 24 11048 5 16 I2 2 i344 34

25 29 121 i l i 3 2 9 29 I 24 1 'I i 1.128 13

4781

16

7174

literals, levels of logic and power of the original circuit, the
number of inputs, literals and levels of the precompute logic,
the final power and the percent reduction in power are shown.
All power estimates are in micro-Watts and are computed using
the techniques described in [6], [9]. A zero delay model and a
clock frequency of 20 MHz was assumed. The rugged script
of sis was used to optimize the precompute logic.

Power dissipation decreases for almost all cases. For circuit
compl6, a 16-bit parallel comparator, the power decreases by
as much as 60% when 8 inputs are used for precomputation.
Multiple-cycle precomputation results are given for circuits
addxompl6 and addmaxl6. shown in Figs. 1 I and 12, re-
spectively. For circuit addrompl6, for instance, the numbers
4/8 under the fifth column indicates that four inputs are used
to precompute the adders in the first cycle and eight inputs are
used to precompute the comparator in the next cycle.

The number of levels of the precompute logic is an indica-
tion of the performance penalty in using precomputation. The
logic that is driving the input flip-flops to the original circuit is
increased in depth by the number of levels of the precompute
logic. In most cases, the increase in the number of levels is
small.

Results on random logic circuits are presented in Table 11.
The random logic circuits are taken from the MCNC combi-
national benchmark sets. We have presented results for those
examples where significant savings in power was obtained.
Again, the second precomputation architecture was used and
the input and output selection algorithms described in Section
IV were used. Due to the size of the circuits, on most examples
the approximate algorithm was used. Circuits for which the
exact algorithm was used are marked with *. The columns
in this table have the same meaning as in Table I, except
for the second and third columns which show the number of
inputs and outputs of each circuit, and the eighth column which
shows the number of outputs that are being precomputed. It

TABLE I1
POWER REDUCTIONS FOR RANDOM LOGIC CIRCUITS

I !

is noteworthy that in some cases, as much as 75% reduction
in power dissipation is obtained.

The area penalty incurred is indicated by the number of
literals in the precomputation logic and is 3% on the average.
The extra delay incurred is proportional to the number of levels
in the precomputation logic and is quite small in most cases.
It should be noted that it may be possible to use the other
precomputation architectures for all of the examples presented
here. Some of these examples are perhaps better suited to other
architectures than the one we used to derive the results, and
therefore larger savings in power may be possible. Secondly,
the inputs and outputs to be selected and the precomputation
logic are determined automatically, making this approach
suitable for automatic logic synthesis systems. Finally, the
significant power savings obtained for random logic circuits
indicate that this approach is not restricted only to datapath
circuits.

VII. OTHER PRECOMPUTATION ARCHITECTURES

In this section, we describe additional precomputation ar-
chitectures. We first present an architecture that is applicable
to all logic circuits and does not require, for instance, that the
inputs should be in the observability don't-care set in order to
be disabled, which was the case for the architectures shown in
Section 111. We also extend precomputation so that it can be
used in combinational logic circuits.

A. Multiplexor-Based Precomputation

All logic functions can be written in a Shannon expansion.
For the function f with inputs X = {XI,. . . , x,} we can

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 2, NO. 4, DECEMBER 1994 434

x[2:n]-
r

m-1 LE 1[
-~ ~

Fig. 14. Precomputation using the Shannon expansion.

x 1

x2

x3
-f

5--

X

X

(a) Original Network

(4)

where fxL and f~ are the cofactors of f with respect to x1.

Fig. 14 shows an architecture based on (4). We implement
the functions fzl and fK. Depending on the value of 21, only
one of the cofactors is computed while the other is disabled by
setting the load-enable signal of its input register. The input
x1 drives the select line of a multiplexor which chooses the
correct cofactor.

The main advantage of this architecture is that it applies to
all logic functions. The input x1 in the example was chosen
for the purpose illustration. In fact, any input X I ? . . . , zn
could have been selected. Unlike the architectures described
earlier, we do not require that the inputs being disabled
should be don’t-cares for the input conditions which we are
precomputing. In other words, the inputs being disabled do not
have to be in the observability don’t-care set. A disadvantage
of this architecture is that we need to duplicate the registers
for the inputs not being used to turn off part of the logic. On
the other hand, no precomputation logic functions have been
added to the circuit.

The algorithm to select the best input for this architecture
is also quite different. We will not discuss this algorithm in
detail, except to mention that in this case, we are interested
in finding the input that yields the most area efficient fzl and
fz functions.

B. Combinational Logic Precomputation

The architectures described so far apply only to sequential
circuits. We now describe precomputation of combinational
circuits.

Suppose we have some combinational logic function f com-
posed of two subfunctions A and B as shown in Fig. lS(a).
Suppose we also want to precompute this function with the
inputs 3:4 and 2 5 . Fig. lS(b) shows how this can be accom-
plished. For simplicity, pass transistors are shown, however,
we have several choices as to what to use within the dotted
circles instead of the pass transistors.

Transmission Gates: Assume that transmission gates are
used in place of the pass transistors in Fig. lS(b). The function

X 4 -* +--
X 5 - - r r - $ +

’W
B

--f

- f

(b) Final Network
Fig. 15. Combinational logic precomputation.

g with inputs x4 and 2 5 drives the transmission gates. As in
the previous architectures, g = 91f. Hence, when g is a
0, the transmission gates are turned off and the new values
of logic block A are prevented from propagating into logic
block B. The inputs x4 and x:, are also inputs to the logic
block B just as in the original network in order to ensure that
the output is set correctly.

For the combinational architecture, there is an implied delay
constraint, i.e., the transmission gates should be off before the
new values of A are computed. In the example shown, the
worst-case delay of the g block plus the arrival time of inputs
x4 or x j should be less than the best-case delay of logic block
A plus the arrival time of the inputs ~ 1 ~ x 2 , or 2 3 . The arrival
time of an input is defined as the time at which the input settles
to its steady state value [5] . If the delay constraint is not met,
then it may be necessary to delay the ~ 1 ~ x 2 and x3 inputs with
respect to the 2 4 and 2 5 inputs in order to get the switching
activity reduction in logic block B.

Transparent Latches: A violation of the delay constraint
described immediately above can result in nodes in the circuit
being stuck at metastable states (halfway between the supply
voltages) causing excessive power dissipation. In order to
ensure that this does not occur, transparent latches can be
used instead of transmission gates. This results in increased
overhead for precomputation. Note that a violation of the delay
constraint may cause glitching in the circuit, but the nodes will
settle to the supply voltages.

AND Gates: One can also replace the pass transistor with
an AND gate. This will reduce switching activity, though not

ALIDINA et al.: SEQUENTIAL LOGIC OFTIMIZATION 435

as much as in the transparent latch case. This is because g
may make a 0 + 1 transition during a clock cycle, possible
causing unnecessary 1 -+ 0 transitions at the outputs of the
AND gates. This option works best for percharged logic.

VIII. CONCLUSION AND ONGOING WORK

We have presented a method of precomputing the output
response of a sequential circuit one clock cycle before the
output is required, and exploited this knowledge to reduce
power dissipation in the succeeding clock cycle. Several
different architectures that utilize precomputation logic were
presented.

In a finite state machine there is typically a single register,
whose inputs are combinational functions of the register out-
puts. The precomputation architectures make no assumptions
regarding feedback. For instance, RI and Ra in Fig. 2 can be
the same register.

Precomputation increases circuit area and can adversely
impact circuit performance. In order to keep area and delay
increases small, it is best to synthesize precomputation logic
which depends on a small set of inputs.

Precomputation works best when there are a small number
of complex functions corresponding to the logic block A of
Figs. 2 and 3. If the logic block has a large number of outputs,
then it may be worthwhile to selectively apply precomputation-
based power optimization to a small number of complex
outputs. This selective partitioning will entail a duplication
of combinational logic and registers, and the savings in power
is offset by this duplication.

Other precomputation architectures are being explored, in-
cluding the architectures of Section VII, and those that rely
on a history of previous input vectors. More work is re-
quired in the automation of a logic design methodology that
exploits multiplexor-based, combinational and multiple-cycle
precomputation.

ACKNOWLEDGMENT

The authors would like to thank A. Chandrakasan for
providing us with information regarding power dissipation in
registers and P. Vanbekbergen for pointing out that transparent
latches should be used in Fig. 15(b).

REFERENCES

P. Ashar, S. Devadas, and K. Keutzer, “Path-delay-fault testability
properties of multiplexor-based networks,” Integrution, the VLSI J . , vol.
15, no. 1, pp. 1-23, July 1993.
R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang, “MIS:
A multiple-level logic optimization system,” in IEEE Trans. Computer-
Aided Design, vol. CAD-6, pp. 1062-1081, Nov. 1987.
R. Bryant, “Graph-based algorithms for Boolean function manipulation,”
IEEE Trans. Comput., vol. C-35, no. 8, pp. 677491, Aug. 1986.
A. Chandrakasan, T. Sheng, and R. W. Brodersen. “Low power CMOS
digital design,” in IEEEJ. Solid-State Circ., pp. 473484, Apr. 1992.
S. Devadas, A. Ghosh, and K. Keutzer, Logic’ Swthesis. New York:
McGraw Hill, 1994.
A. Ghosh, S. Devadas, K. Keutzer, and J. White, “Estimation of average
switching activity in combinational and sequential circuits,” in Proc.
29th Design Automation ConJ, June 1992, pp. 253-259.
L. Glasser and D. Dobberpuhl, The Design and Anulysis of V U / Circuits.
Reading, MA: Addison-Wesley, 1985.

[8] J. Monteiro, S. Devadas, and A. Ghosh, “Retiming sequential circuits
for low power,” in Proc. Int. Con$ Computer-Aided Design, Nov. 1993,
pp. 398-402.

[9] J. Monteiro, S . Devadas, and B. Lin, “A methodology for efficient
estimation of switching activity in sequential logic circuits,” in Proc.
31st Design Automation Con$, June 1994, pp. 12-17.

[lo] F. Najm, “Transition density, a stochastic measure of activity in dig-
ital circuits,” in Proc. 28th Design Automation Con$, June 1991, pp.
644-649.

[l l] K. Roy and S. Prasad, “SYCLOP: Synthesis of CMOS logic for low
power applications,” in Proc. Int. Con$ Computer Design: V U I in
Computers and Processors, Oct. 1992, pp. 464-467.

[121 A. Shen, A. Devadas, A. Ghosh, and K. Keutzer, “On average power dis-
sipation and random pattern testability of combinational logic circuits,”
in Proc. Int. Con$ Computer-Aided Design, Nov. 1992, pp. 402407.

1131 C.-Y. Tsui, M. Pedram, and A. Despain, “Exact and approximate
methods for switching activity estimation in sequential logic circuits,”
in Proc. 31st Design Automation Cont. June 1994, pp. 18-23.

Mazhar Alidina received the B.S. degree from
Lehigh University in 1992 and the S.M. degree from
the Massachusetts Institute of Technology in 1994,
both in electrical engineering.

He is currently a member of the Technical Staff
with the Signal Processing and Integrated Circuit
Design group of AT&T Bell Laboratories. His re-
search interests are in low power design, CAD for
low power, and VLSI design.

Jose Monteiro was born in Lisbon, Portugal. He
received the Engineer’s and Master’s degrees in
electrical and computer engineering in 1989 and
1992 respectively, from Instituto Superior T6cnico
at the Technical University of Lisbon.

He is currently working on the Ph.D. degree at the
Massachusetts Institute of Technology in the area
of power estimation and synthesis for low power of
VLSI circuits.

Srinivas Devadas (M’88) received the B. Tech degree in electrical engineer-
ing from the Indian Institute of Technology, Madras in 1985 and the M.S.
and Ph.D. degrees in electrical engineering from the University of California,
Berkeley, in 1986 and 1988, respectively.

Since August 1988, he has been at the Massachusetts Institute of Tech-
nology, Cambridge, and is currently an Associate Professor of Electrical
Engineering and Computer Science. His research interests span all aspects
of synthesis of VLSI circuits, with emphasis on optimization techniques for
synthesis at the logic, layout and architectural levels, testing of VLSI circuits,
formal verification, hardwadsoftware co-design, design-for-testability meth-
ods and interactions between synthesis and testability of VLSI systems.

Dr. Devadas held the Analog Devices Career Development Chair of Elec-
trical Engineering from 1989 to 1991. He has received five Best Paper awards
at CAD conferences and journals, including the 1990 IEEE TRANSACTIONS ON
CIRCUITS AND DEVICES Best Paper award. In 1992, he received a NSF Young
Investigator Award. He has served on the technical program committees of
several conferences and workshops including the International Conference
on Computer Design, and the International Conference on Computer-Aided
Design. He is a member of the ACM.

436 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 2, NO. 4, DECEMBER 1994

Abhuit Ghosh (M’91) received the B.Tech degree
in electrical and electronics engineering from the
Indian Institute of Technology, Kharagpur, in 1986.
He received the M.S. and Ph.D. degrees in elec-
trical engineering and computer science from the
University of California at Berkeley in 1988 and
1991, respectively.

Since 1991, he has been a Senior Engineer at Mit-
subishi Electric Research Laboratories, Inc., Sunny-
vale, CA, conducting research in CAD for VLSI
and system design. His research interests include

all aspects of CAD for VLSI with special emphasis on logic synthesis, formal
verification, testing, parallel processing, fault-tolerant computing, compiler
optimization, low power design and synthesis, and electronic system design
automation.

Dr. Ghosh received the Best Paper award at the 27th IEEE Design
Automation Conference, 1990. He is a member of ACM.

Maria Papaefthymiou received the B.S. degree in
electrical engineering from the California Institute
of Technology in 1988 and the S.M. and Ph.D.
degrees in computer science from the Massachusetts
Institute of Technology in 1990 and 1993, respec-
tively.

Currently, he is an Assistant Professor of Elec-
trical Engineering and Computer Science at Yale
University, New Haven, CT. His research interests
include algorithms, parallel computation, and VLSI
design.

