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Abstract- We address the problem of optimizing logic-level 
sequential circuits for low power. We present a powerful se- 
quential logic optimization method that is based on selectively 
precomputing the output logic values of the circuit one clock cycle 
before they are required, and using the precomputed values to 
reduce internal switching activity in the succeeding clock cycle. 
We present two different precomputation architectures which 
exploit this observation. The primary optimization step is the 
synthesis of the precomputation logic, which computes the output 
values for a subset of input conditions. If the output values can be 
precomputed, the original logic circuit can be “turned ofl” in the 
next clock cycle and will have substantially reduced switching 
activity. The size of the precomputation logic determines the 
power dissipation reduction, area increase and delay increase rel- 
ative to the original circuit. Given a logic-level sequential circuit, 
we present an automatic method of synthesizing precomputation 
logic so as to achieve maximal reductions in power dissipation. 
We present experimental results on various sequential circuits. 
Up to 75% reductions in average switching activity and power 
dissipation are possible with marginal increases in circuit area 
and delay. 

I. INTRODUCTION 

VERAGE POWER DISSIPATION has recently emerged A as an important parameter in the design of general- 
purpose and application-specific integrated circuits. Optimiza- 
tion for low power can be applied at many different levels of 
the design hierarchy. For instance, algorithmic and architec- 
tural transformations can trade off throughput, circuit area, 
and power dissipation [4], and logic optimization methods 
have been shown to have a significant impact on the power 
dissipation of combinational logic circuits [ 121. 

In CMOS circuits, the probabilistic average switching ac- 
tivity of the circuit is a good measure of the average power 
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dissipation of the circuit. Average power dissipation can thus 
be computed by estimating the average switching activity. 
Several methods to estimate power dissipation for CMOS com- 
binational circuits have been developed (e.g., [6],  [lo]). More 
recently, efficient and accurate methods of power dissipation 
estimation for sequential circuits have been developed [9], 
[131. 

In this paper, we are concerned with the problem of opti- 
mizing logic-level sequential circuits for low power. Previous 
work in the area of sequential logic synthesis for low power 
has focused on state encoding [ l  I ]  and retiming [8] algorithms. 
We present a powerful sequential logic optimization method 
that is based on selectively precomputing the output logic 
values of the circuit one clock cycle before they are required, 
and using the precomputed values to reduce internal switching 
activity in the succeeding clock cycle. 

The primary optimization step is the synthesis of precompu- 
tation logic, which computes the output values for a subset of a 
input conditions. If the output values can be precomputed, the 
original logic circuit can be “turned off’ in the next clock cycle 
and will not have any switching activity. Since the savings in  
the power dissipation of the original circuit is offset by the 
power dissipated in the precomputation phase, the selection 
of the subset of input conditions for which the output is 
precomputed is critical. The precomputation logic adds to the 
circuit area and can also result in an increased clock period. 

Given a logic-level sequential circuit, we present an au- 
tomatic method of synthesizing the precomputation logic so 
as to achieve a maximal reduction in power dissipation. We 
present experimental results on various sequential circuits. For 
some circuits, 75% reductions in average switching activity are 
possible with marginal increases in circuit area and delay. 

In Section 11, we briefly describe our model for power dissi- 
pation. In Section I11 we describe two different precomputation 
architectures. Algorithms that syntheqize precomputation logic 
so as to achieve power dissipation reduction are presented in 
Section IV. In Section V we describe a method for multiple- 
cycle precomputation. Experimental results are presented in 
Section VI. In Section VI1 we describe additional precompu- 
tation architectures which are the subject of ongoing research. 

11. A POWER DISSIPATION MODEL 

Under a simplified model, the energy dissipation of a CMOS 
circuit i s  directly related to  the switching activity. 
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Fig. 1. Original Circuit. 

In particular, the three simplifying assumptions are: 
The only capacitance in a CMOS logic-gate is at the 
output node of the gate. 
Either current is flowing through some path from Voo 
to the output capacitor, or current is flowing from the 
output capacitor to ground. 
Any change in a logic-gate output voltage is a change 
from VDD to ground or vice-versa. 

All of these are reasonably accurate assumptions for well- 
designed CMOS gates [7], and when combined imply that the 
energy dissipated by a CMOS logic gate each time its output 
changes is roughly equal to the change in energy stored in the 
gate's output capacitance. If the gate is part of a synchronous 
digital system controlled by a global clock, it follows that the 
average power dissipated by the gate is given by: 

where P,,, denotes the average power, Clr,ad is the load 
capacitance, Vdd is the supply voltage, TCyc is the global clock 
period, and E(rransitions) is the expected value of the number 
of gate output transitions per global clock cycle [ 101, or equiv- 
alently the average number of gate output transitions per clock 
cycle. All of the parameters in (1) can be determined from 
technology or circuit layout information except E(transitions), 
which depends on both the logic function being performed and 
the statistical properties of the primary inputs. 

Equation (1)  is used by the power estimation techniques 
such as [6], [lo] to relate switching activity to power dissi- 
pation. 

111. PRECOMPUTATION ARCHITECTLJRES 

We describe two different precomputation architectures and 
discuss their characteristics in terms of their impact on power 
dissipation, circuit area and circuit delay. 

A. First Precomputation Architecture 

Consider the circuit of Fig. 1. We have a combinational 
logic block A that is separated by registers RI and R2. While 
RI and R2 are shown as distinct registers in Fig. 1 they could, 
in fact, be the same register. We will first assume that block 
A has a single output and that it implements the Boolean 
function f .  

In Fig. 2 the first precomputation architecture is shown. Two 
Boolean functions g1 and 92 are the predictor functions. We 
require: 

Fig. 2. First precomputation architecture. 

P 

Fig. 3. Second precomputation architecture. 

Therefore, during clock cycle t if either g1 or g2 evaluates to a 
1, we set the load enable signal of the register R1 to be 0. This 
means that in clock cycle t + 1 the inputs to the combinational 
logic block A do not change. If g1 evaluates to a 1 in clock 
cycle t, the input to register R2 is a 1 in clock cycle t+ I ,  
and if g2 evaluates to a 1, then the input to register Rz is a 0. 
Note that g1 and 9 2  cannot both be 1 during the same clock 
cycle due to the conditions imposed by ( 2 )  and (3). 

A power reduction in block A is obtained because for a 
subset of input conditions corresponding to g1 + g2 the inputs 
to A do not change implying zero switching activity. However, 
the area of the circuit has increased due to additional logic 
corresponding to 91, g2,  the two additional gates shown in the 
figure, and the two flip-flops marked FF. The delay between 
R 1  and R 2  has increased due to the addition of the AND- 
OR gate. Note also that g1 and g2 add to the delay of paths 
that originally ended at R 1  but now pass through g1 or 92 
and the NOR gate before ending at the load enable signal 
of the register RI .  Therefore, we would like to apply this 
transformation on noncritical logic blocks. 

The choice of g1 and g2 is critical. We wish to include as 
many input conditions as we can in g1 and 9 2 .  In other words, 
we wish to maximize the probability of gl  or g2 evaluating to 
a 1. In the extreme case this probability can be made unity if 
g1 = f and g2 = 7. However, this would imply a duplication 
of the logic block A and no reduction in power with a twofold 
increase in area! To obtain reduction in power with marginal 
increases in circuit area and delay, g1 and g:! have to be 
significantly less complex than f .  One way of ensuring this is 
to make g1 and g:! depend on significantly fewer inputs than 
f. This leads us to the second precomputation architecture of 
Fig. 3.  
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Fig. 4. Second precomputation architecture for a finite state machine. 

B. Second Precomputation Architecture 

In the architecture of Fig. 3, the inputs to the block A have 
been partitioned into two sets, corresponding to the registers 
R1 and Rz. The output of the logic block A feeds the register 
R3. The functions g1 and g2 satisfy the conditions of (2) and 
(3) as before, but g1 and g2 only depend on a subset of the 
inputs to f. If g1 or g2 evaluates to a 1 during clock cycle t, the 
load enable signal to the register R2 is turned off. This implies 
that the outputs of R2 during clock cycle t+ 1 do not change. 
However, since the outputs of register R1 are updated, the 
function f will evaluate to the correct logical value. A power 
reduction is achieved because only a subset of the inputs to 
block A change implying reduced switching activity. 

As before, 91 and g2 have to be significantly less complex 
than f and the probability of g1 + g2 begin a 1 should be 
high in order to achieve substantial power gains. The delay 
of the circuit between R1/R2 and R3 unchanged, allowing 
precomputation of logic that is on the critical path. However, 
the delay of paths that originally ended at R1 has increased. 

The choice of inputs to g1 and g2 has to be made first, and 
then the particular functions that satisfy (2) and (3) have to 
be selected. Methods to perform this selection for this second 
precomputation architecture are described in Section IV. 

C. Precomputation for Finite State Machines 

As mentioned in Section 111-A, these precomputation archi- 
tectures are not restricted to pipeline circuits. We present in 
Fig. 4 an example of precomputation for a finite state machine 
using this second precomputation architecture. 

D. An Example 

We give an example that illustrates the fact that substantial 
power gains can be achieved with marginal increases in circuit 
area and delay. The circuit we are considering is a n-bit 
comparator that compares two n-bit numbers C and D and 
computes the function C > D. The optimized circuit with 

Fig. 5. A comparator example. 

precomputation logic is shown in Fig. 5. The precomputation 
logic is as follows: 

91 = C ( n  - 1) . D ( n  - 1) 

g2 = C ( n  - 1) . D ( n  - 1) 

Clearly, when g1 = 1, C is greater than D, and when g2 = 
l , C  is less than D. We have to implement 

91 + 9 2  = c ( n  - 1) 8 o ( n  - 1) 

where 8 stands for the exclusive-nor operator. 
Assuming a uniform probability for the inputs', the proba- 

bility that the XNOR gate evaluates to a 1 is 0.5, regardless of n. 
For large n, we can neglect the power dissipation in the XNOR 
gate, and therefore, we can achieve a power reduction of close 
to 50%. The reduction will depend upon the relative power 
dissipated by the vector pairs with C ( n  - 1) @ D ( n  - 1) = 1 
and the vector pairs with C(n - 1) 18 D ( n  - 1) = 0. If we add 
the inputs C(n - 2) and D(n  - 2) to g1 and ,92 it is possible 
to achieve a power reduction close to 75%. 

Iv .  SYNTHESIS OF PRECOMPUTATION LOGIC 

A. Introduction 

In this section, we will describe methods to determine the 
functionality of the precomputation logic, and then describe 
methods to efficiently implement the logic. 

We will focus on the second precomputation architecture 
(Section 111-B) illustrated in Fig. 3. In order to ensure that 
the precomputation logic is significantly less complex than 
the combinational logic in the original circuit, we will restrict 
ourselves to identifying g1 and g2 such that they depend on a 
relatively small subset of the inputs to the logic block A. 

B. Precomputation and Observability Don 't-Cares 

Assume that we have a logic function f (X),  with X = 
{xl,. . . , xn}, corresponding to block A of Fig. 1. Given that 
the logic function implemented by block A is f, then the 
observability don't-care set for input xi is given by: 

'The assumption here is that each C(t) and D(z )  has a 0.5 static probability 
of being a 0 or a I .  
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where fzz and fz are the cofactors of f with respect to x,, 
and similarly for 7. (The cofactors can be obtained simply by 
setting z, to a 1 or o in f or 7.) 

If we determine that a given input combination is in ODC, 
then we can disable the loading of z, into the register since 
that means that we do not need the value of z, in order to know 
what the value of f is. If we wish to disable the loading of 
registers . . ., x,,, we will have to implement the function 

n 

g =  n ODCi 
, = m i l  

and use ij as the load enable signal for the registers corre- 
sponding to z,+1,. . ., 5,. 

For more details regarding observability don’t-cares the 
reader is referred to [ 5 ]  (p. 179). 

C. Precomputation Logic 

Let us now consider the architecture of Fig. 3. Assume that 
the inputs 21,. . . ,E,, with m < n have been selected as 
the variables that g1 and 92 depend on. We have to find g1 
and 92 such that they satisfy the constraints of (2) and (3), 
respectively, and such that prob(gl + g2 = 1) is maximum. 

We can determine g1 and 92 using universal quantification 
on f .  The universal quant@cation of a function f with respect 
to a variable :E, is defined as: 

UZ%f = fx2 . fc 
This gives all the combinations over the inputs 21, . . . , x,-1, 
z,+1, . . . , x,, that result in f = 1 such that the value of 2, 
does not matter. 

Given asubset of inputs S = (21,. . . ,x,}, set D = X - S .  
We can define: 

U D f  = UZ.,,+L ” ’  Uxnf 

Theorem 4.1: 91 = f satisfies (2). Further, no function 
h(xl,. . . , x,) exists such that prob(h = 1) > prob(g1 = 1) 
and such that h = 1 + f = 1. 

Pro08 By construction, if for some input combination 
al , . . . , a, causes g1 (a l .  . . . , a,) = 1, then for that combina- 
tion of xl.  . . . , x, and all possible combinations of variables 
in x,+1, . . . ,  5,f(al ....,a,, ,z,+1 ,... ,x,,) = 1. 

We cannot add any minterm over zl, . . . , .c, to g1 because 
for any minterm that is added, there will be some combination 
of x,,,,1, . . . zn for which f(xl,. . . , 2,) will evaluate to a 
0. Therefore, we cannot find any function h that satisfies (2) 

0 
Similarly, given a subset of inputs S ,  we can obtain a 

and such that prob(h = 1) > prob(g1 = 1). 

maximal 9 2  by: 

We can compute the functionality of the precomputation 
logic as g1 + 92. 

Selecting a Subset of Inputs: Exact Method: Given a func- 
tion f we wish to select the “best” subset of inputs S of 
cardinality k .  Given S ,  we have D = X - S and we compute 
yl = U D ~ ,  g2 = U D ~ .  In the sequel, we assume that the 
best set of inputs corresponds to the inputs which result in 

SELECT-INPUTS( f, IC ): 

/* f = function to  precompute */ 
/* k = # of inputs to  precompute with */ 
BEST-PROB = 0 ; 
SELECTED-SET = Q ; 

return( SELECTEDSET ) ; 

{ 

SELECT-RECUR( f, f, Q, X, (XI - k ) ; 

1 

{ 
SELECT-RECUR( fa, fb ,  D ,  Q, 1 ): 

i f (  PI + IQ1 < 1 )  
ret urn ; 

pT = prob(fa = 1) +prOb(fb = 1) ; 
if( pr  5 BEST-PROB ) 

else if( )Dl == I ) { 
ret urn ; 

BESTPROB = pr  ; 

return ; 
SELECTEDSET = X - D ; 

1 
choose zi E Q such that i is minimum ; 
SELECT-RECUR( U q f a ,  uz,fb, D U s i ,  Q - si7 1 ) ; 
SELECT-RECUR( fa, fb, D, Q - z;, 1 ) ; 

return ; 

Procedure to determine the optimal set of inputs. 
1 

Fig. 6.  

prob(g1 +g2 = 1) being maximum for a given k .  We know that 
prob(gl+gZ = 1) = prob(gl = l )+prob(g~ = 1) since g1 and 
g2 cannot both be 1 on the same input vector. The above cost 
function ignores the power dissipated in the precomputation 
logic, but since the number of inputs to the precomputation 
logic is significantly smaller than the total number of inputs 
this is a good approximation. 

In the sequel we describe a branching algorithm that deter- 
mines the optimal set of inputs maximizing the probability of 
the 91 and 92  functions. This algorithm is shown in pseudocode 
in Fig. 6. 

The procedure SELECTlNPUTS receives as arguments 
the function f and the desired number of inputs IC to the 
precomputation logic. SELECT-INPUTS calls the recursive 
procedure SELECTBECUR with five arguments. The first 
two arguments corresponds to the g1 and g2 functions, which 
are initially f and 7. A variable is selected within the recursive 
procedure and the two functions are universally quantified 
with respect to the selected variable. The third argument D 
corresponds to the set of variables that g1 and g2 do not depend 
on. The fourth argument Q corresponds to the set of “active” 
variables, which may be selected or discarded. Finally, the 
argument I correspond to the number of variables that have 
to be universally quantified in order to obtain g1 and 92 with 
k or fewer inputs. 

If (DI + IQ1 < I it means that we have selected too many 
variables in the earlier recursions and we will not be able to 
quantify with respect to enough input variables. The functions 
g1 and g2 will depend on too many variables (> IC). 
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We calculate the probability of g1 + g2. If this probability 
is less than the maximum probability we have encountered 
thus far, we can immediately return because of the following 
invariant which is true because f contains Uxtf.  

p r o W x * f )  = Prob(fz% . fz) L prob(f) Vzz, f 
Therefore as we universally quantify variable3 from a given fa 
and f b  function pair the pr  quantity monotonically decreases. 

We store the selected set corresponding to the maximum 
encountered probability. 

Selecting a Subset of inputs: Approximate Method: The 
worst-case running time of the exact method is exponential 
in the number of input variables and, although we have a 
nice pruning condition, there are many examples for which we 
cannot use it. Thus we have also implemented an approximate 
algorithm that looks at each input individually and chooses 
the IC most promising inputs. 

For each input we calculate: 

p ,  = Prob(uz%f) + prob(Uz*f) 

p ,  is the probability that we know the value of f without 
knowing the value of IC,. If p ,  is high then most of the time 
we do not need z, to compute f .  Therefore we select the IC 
inputs corresponding to smaller values of p , .  

Implementing the Logic: The Boolean operations of OR 
and universal quantification required in the input selection 
procedure can be carried out efficiently using reduced, or- 
dered Binary Decision Diagrams (ROBDDs) [3]. We obtain a 
ROBDD for the g1 +g2 function. A ROBDD can be converted 
into a multiplexor-based network (see [l]) or into a sum-of- 
products cover. The network or cover can be optimized using 
standard combinational logic optimization methods that reduce 
area [2] or those that target low power dissipation [12]. 

D. Multiple-Output Functions 

In general, we have a multiple-output function f l ,  . . . , f m  
that corresponds to the logic block A in Fig. 1. All the pro- 
cedures described thus far can be generalized to the multiple- 
output case. 

The functions gl; and g2i are obtained using the equations 
below. 

where D = X - S as before. The function g whose comple- 
ment drives the load enable signal is obtained as: 

m 

9 = n c g 1 i  + m) 
i= l  

The function g corresponds to the set of input conditions where 
the variables in S control the values of all the fi's regardless 
of the values of variables in D = X - S. 

Selecting a Subset of Outputs: Exact Method: We describe 
an algorithm, which given a multiple-output function, selects 
a subset of outputs and a subset of inputs so as to maximize 
a given cost function that is dependent on the probability of 

SELECT-OUTPUTS( F = {fi ,  ..., fm}, k ): 

/*  F = multi-output function to precompute ' 1  
I' k = # of inputs to precompute with ' 1  
BEST-COST = 0 ; 
SEL-OPSET = 6 ; 
SELECT-ORECUR( 6 ,  F ,  1, k ) ; 
return( SEL-OPSET ) ; 

t 

} 

{ 
SELECT-ORECUR( G, H ,  proldG, k ): 

11 = gates(f - H)/totalgates x proldG ; 
if( If 5 BEST-COST ) 

BEST-PROB = totalgates/gates(F - If) x BEST-COST ; 
return ; 

i f ( G # d )  
if( SELECT-INPUTS( G, k ) == 4 ) 

return ; 
prG = BESTPROB ; 
cost = prG x gates(G)/totalgates ; 
if( cost > BEST-COST) { 

BEST-COST = cost ; 
SEL-OPSET = G ; 

/*  BEST-PROB is set in  SELECT-INPUTS ' 1  

1 
choose f, E H such that i is minimum ; 

SELECT_ORECUR( G, H - f,, prG, k ) ; 

return : 

SELECT-ORECUR( G U f i ,  H - f;. p G ,  k ) ; 

} 

Fig. 7. Procedure to determine the optimal set of outputs 

the precomputation logic and the number of selected outputs. 
This algorithm is described in pseudocode in Fig. 7. 

The inputs to procedure SELECT-OUTPUTS are the 
multiple-output function F ,  and a number k corresponding 
to the number of inputs to the precomputation logic. 

The procedure SELECT-ORECUR receives as inputs two 
sets G and H, which correspond to the current set of outputs 
that have been selected and the set of outputs which can be 
added to the selected set, respectively. Initially, G = 4 and 
H = F .  The cost of a particular selection of outputs, namely 
G, is given by prG x gates(F - H)/total-gates, where prG 
corresponds to the signal probability of the precomputation 
logic, gates(F - H )  corresponds to the number of gates in the 
logic corresponding to the outputs in G and not shared by any 
output in H, and total-gates corresponds to the total number 
of gates in the network (across all outputs of F) .  

There are two pruning conditions that are checked for in 
the procedure SELECT-ORECUR. The first corresponds to 
assuming that all the outputs in H can be added to G without 
decreasing the probability of the precomputation logic. This 
is a valid condition because the quantity proldG in each 
recursive call can only decrease with the addition of outputs 
of G. We then set a lower bound on the probability of 
the precomputation logic prior to calling the input selection 
procedure. Optimistically assuming that all the outputs in H 
can be added to G without lowering the precomputation logic 
probability, we are not interested in a precomputation logic 
probability for G that would result in a cost that is equal to 
or lower than BEST-COST. 

Logic Duplication: Since we are only precomputing a sub- 
set of outputs, we may incorrectly evaluate the outputs that 
we are not precomputing as we disable certain inputs during 
particular clock cycles. If an output that is not being precom- 
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Fig. 8. Logic duplication in a multiple-output function. 

puted depends on an input that is being disabled, then the 
output will be incorrect. 

The support of f ,  denoted as support(f) ,  is the set of all 
variables xi that occur in f as IC; or E. Once a set of outputs 
G c F and a set of precomputation logic inputs S c X have 
been selected, we need to duplicate the registers corresponding 
to (support (G) - S )  n suppnrt(F - G). The inputs that are 
being disabled are in support(G) - S. Logic in the F - G 
outputs that depends on the set of duplicated inputs has to 
be duplicated as well. It is precisely for this reason that we 
maximize prG x gates(F - H)/total-gates rather than prG in 
the output-selection algorithm. This way we are maximizing 
the number of gates (logic corresponding to the outputs in G) 
that will not switch when precomputation is possible but not 
taking into account gates that are shared by the outputs in H ,  
thus reducing the amount of duplication as much as possible. 

An example of a multiple-output function where the regis- 
ters and logic need to be duplicated is shown in Fig. 8. 

The original network has outputs fl and f 2  and inputs 
X I ! .  . . , xq. The function fl depends on inputs XI,. . . ,Q and 
the function f:! depends to inputs z3 and 2 4 .  Hence, the two 
outputs are sharing the input 2 3 .  Suppose that the output- 
selection procedure determines that f I  is the best output to 
precompute and that inputs 2 1  and x2 are the best inputs to 
the precomputation logic. Therefore, just as in the case of a 
single-output function, the inputs :c1 and LC:! feed the input 
register, whereas, z:3 feeds the register with the load-enable 
signal. However, since f 2  depends on ~3 and the register 
with the load-enable signal contains stale values in some clock 
cycles, we need to duplicate the register for 2 3  and the logic 
from :c3 to f:!. 

Selecting a Subset of Outputs: Approximate Method: Again 
the exact algorithm is worst-case exponential in the number of 
inputs plus number of outputs, thus we need an approximate 
method to handle larger circuits. We designed an approximate 
algorithm which is presented in pseudocode in Fig. 9. 

SELECT-OUTPUTS-APPROX( F = {fi, . . . , fm}, k ): 
{ 

BEST-COST = 0 ; 
foreach I, E X { /* Output selection */ 

foreach f, E F { 
gJ = .fJ + ; 

1 
foreach f, E F { 

G = {fJ} ; 
H = F - ; 
probG = prob(g,) ; 
curr-cost = probG x gates(F - H)/totalgates; 

/* Add any outputs that make the cost increase */ 
9 = g , ;  
foreach fi E F { 

G = G u { f i } ;  
probG = prob(g . gr) ; 
cost = probG x gates(F - H)/totalgates ; 
if( cost > C U T T L O S t  ) { 

C U T T L O S ~  = cost ; 
9 ’ 9 . 9 1 ;  

} else 
G = G - { f r } ;  

1 
1 
if( C U T T L O S ~  > BEST-COST ) { 

BEST-COST = CUTT-COS~ ; 
SEL-OP-SET = G ; 

1 
foreach 5, E X { 

g = 1 ;  
foreach f, E SEL-OP-SET 

PI = prob(g) i 

1 
/* Input selection */ 

9 = 9 (ur,fj t ur,’f;) ; 

1 
select the k z,’s corresponding to  smaller p,’s 

1 
Fig 9 Procedure to determine a good set of outputs 

In this algorithm we first select the set of outputs that will 
be precomputed and then select the inputs that we are going 
to precompute those outputs with. When we are selecting the 
outputs we still do not know which inputs are going to be 
selected, thus we select those outputs that seem to be the most 
precomputable. Universally quantifying just one of the inputs, 
we start with one output and compute the same cost function as 
in the exact method, prG x gates(F - H)/total-gates. Then we 
add outputs that make the cost function increase. We repeat 
this process for each input. At the end we keep the set of 
outputs corresponding to the maximum cost. 

Once we have a set of promising outputs to precompute we 
can use the approximate algorithm described in Section IV-C- 
2 to select the inputs. This algorithm runs in polynomial time 
in the number outputs times the number of inputs. 

V. MULTIPLE CYCLE PRECOMPUTATION 

A.  Basic Strategy 

It is possible to precompute output values that 
required in the succeeding clock cycle, but required 2 
clock cycles later. 

are not 
or more 
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Fig. IO. Multiple cycle precomputation 

Consider the topology of Fig. IO. If the register outputs of 
R3 are not used except to compute f ,  then we can precompute 
the value of the function f using a selected set of inputs, 
namely those corresponding to register 111. If f can be 
precomputed to a 1 or a 0 for a set of input conditions, then for 
these inputs we can turn off the load enable \ignal to R,. This 
will reduce switching activity not only in logic block A, but 
also in logic block B, because there will be reduced switching 
activity at the outputs of R3 in the clock cycle following the 
one where the outputs of R2 do not change. 

B. Examples 

We give examples illustrating multiple-cycle precomputa- 
tion. 

Consider the circuit of Fig. 11. The function f computes 
( G  + D )  > ( X  + Y )  in two clock cycles2. Attempting to 
precompute G+ D or X + Y using the methods of the previous 
section do not result in any savings because there are too 
many outputs to consider. However, 2-cycle precomputation 
can reduce switching activity by close to 12.5% if the functions 
below are used. 

~~ 

!/I = ('(71, - 1) . D ( n  - 1) . X ( n  - 1> ' Y(71 - 1) 
_ _ _ _ ~  

{ /2  = C ( 7 t  - 1) ' D(71 - 1) . X(71 - 1) . Y(71 - I) 

where g1 and Q, satisfy the constraints of (2) and (3), respec- 
tively. Since proh(g1 + 9,) = & = 0.125, we can disable the 
loading of registers C(71. - 2 : O ) ,  D(71 - 2 : O), X ( n  - 2 : 0), 
and I'(n,-2 : 0 )  12.5% of the time, which results in switching 
activity reduction. This percentage can be increased to over 
45% by using C(TJ ,  - 2) through Y (71 - 2). We can additionally 
use single-cycle precotnputation logic (as illustrated in Fig. 5) 
to further reduce switching activity in the > comparator of 
Fig. 1 1 .  

Next, consider the circuit of Fig. 12. The multiple-output 
function f computes MAX(C + D , X  + Y )  in two clock 
cycles. We can use exactly the same g1 and g2 functions as 
those immediately above, but 91 is used to disable the loading 
of registers X(,n - 2 : 0) and Y(71 - 2 : 0), and 9 2  is used to 
disable the loading of C ( 7 - 2  : 0) and D(,/j,- 2 : 0). We exploit 
the fact that if we know that C + D > X + l', there is no need 
to compute X + Y ,  and vice versa. Finally, we can implement 
the MAX function as shown in Fig. 13, duplicate registers 
and use single-cycle precomputation on the > operator (as 
illustrated in Fig. 5 )  to achieve switching activity reduction. 

' + in the figure stands for addition. 

n 

t-l 
Fig. 1 1 ,  Adder-comparator circuit. 

n 
C- 

D ~- 

X- 

Y- 

n 
0- 

Fig. 12. Adder-maximum circuit. 

.- R7 F 0 

Do. 
Fig. 13. Precomputation applied to maximum circuit. 

VI. EXPERIMENTAL RESULTS 

We first present results on datapath circuits such as carry- 
select adders, comparators, and interconnections of adders and 
comparators in Table I. In all examples the precomputation 
architecture of Fig. 3 was used and all the outputs of each 
circuit were precomputed. For each circuit. the number of 
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Original Prernmpute Logic Optimized 

I 0 L i l s  Levels Power I ~ 0 Lits Levels Power % Red 

39 3 395 I I  2387 4 I 3 4 I 13% 42 

47 36 167 3 I835 1 ' J5 I I 1537 ~ 16 

TABLE I 
POWER REDUCTIONS FOR DATAPATH CIRCUITS 

cni l3R' 

cnli5n* 

curb '  

m a l 6  350 9 

d d m a x l 6  3090 9 
__ 

mal6 975 10 

6 R 35 2 286 3 8 3 I 153 1 4 i  

21 I 61 4 1-14 I I I I 574 23 

16 4 ($2 5 620 5 4 10 I 353 43 

Precompute Logic Optimized 

'ower Bits Literals Levels Power % Red 

cps 

d a h  

duke2 

- 
6941 

- 
1744 

737[ 
- 

11 109 l l U 8  9 3726 i 101 , 2R ' .I 2191 4 1  

i i  16 3067 24 11048 5 16 I2 2 i344 34 

25 29 121 i l i 3 2  9 29 I 24 1 'I i 1.128 13 

4781 

16 

7174 

literals, levels of logic and power of the original circuit, the 
number of inputs, literals and levels of the precompute logic, 
the final power and the percent reduction in power are shown. 
All power estimates are in micro-Watts and are computed using 
the techniques described in [6], [9]. A zero delay model and a 
clock frequency of 20 MHz was assumed. The rugged script 
of sis was used to optimize the precompute logic. 

Power dissipation decreases for almost all cases. For circuit 
compl6, a 16-bit parallel comparator, the power decreases by 
as much as 60% when 8 inputs are used for precomputation. 
Multiple-cycle precomputation results are given for circuits 
addxompl6 and addmaxl6. shown in Figs. 1 I and 12, re- 
spectively. For circuit addrompl6, for instance, the numbers 
4/8 under the fifth column indicates that four inputs are used 
to precompute the adders in the first cycle and eight inputs are 
used to precompute the comparator in the next cycle. 

The number of levels of the precompute logic is an indica- 
tion of the performance penalty in using precomputation. The 
logic that is driving the input flip-flops to the original circuit is 
increased in depth by the number of levels of the precompute 
logic. In most cases, the increase in the number of levels is 
small. 

Results on random logic circuits are presented in Table 11. 
The random logic circuits are taken from the MCNC combi- 
national benchmark sets. We have presented results for those 
examples where significant savings in power was obtained. 
Again, the second precomputation architecture was used and 
the input and output selection algorithms described in Section 
IV were used. Due to the size of the circuits, on most examples 
the approximate algorithm was used. Circuits for which the 
exact algorithm was used are marked with *. The columns 
in this table have the same meaning as in Table I, except 
for the second and third columns which show the number of 
inputs and outputs of each circuit, and the eighth column which 
shows the number of outputs that are being precomputed. It 

TABLE I1 
POWER REDUCTIONS FOR RANDOM LOGIC CIRCUITS 

I ! 

is noteworthy that in some cases, as much as 75% reduction 
in power dissipation is obtained. 

The area penalty incurred is indicated by the number of 
literals in the precomputation logic and is 3% on the average. 
The extra delay incurred is proportional to the number of levels 
in the precomputation logic and is quite small in most cases. 
It should be noted that it may be possible to use the other 
precomputation architectures for all of the examples presented 
here. Some of these examples are perhaps better suited to other 
architectures than the one we used to derive the results, and 
therefore larger savings in power may be possible. Secondly, 
the inputs and outputs to be selected and the precomputation 
logic are determined automatically, making this approach 
suitable for automatic logic synthesis systems. Finally, the 
significant power savings obtained for random logic circuits 
indicate that this approach is not restricted only to datapath 
circuits. 

VII. OTHER PRECOMPUTATION ARCHITECTURES 

In this section, we describe additional precomputation ar- 
chitectures. We first present an architecture that is applicable 
to all logic circuits and does not require, for instance, that the 
inputs should be in the observability don't-care set in order to 
be disabled, which was the case for the architectures shown in 
Section 111. We also extend precomputation so that it can be 
used in combinational logic circuits. 

A. Multiplexor-Based Precomputation 

All logic functions can be written in a Shannon expansion. 
For the function f with inputs X = {XI,. . . , x,} we can 
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x[2:n]- 
r 

m-1 LE 1[ 
-~ ~ 

Fig. 14. Precomputation using the Shannon expansion. 

x 1  

x2 

x3  
-f  

5-- 

X 

X 

(a) Original Network 

(4) 

where fxL and f~ are the cofactors of f with respect to x1. 

Fig. 14 shows an architecture based on (4). We implement 
the functions fzl  and fK.  Depending on the value of 21, only 
one of the cofactors is computed while the other is disabled by 
setting the load-enable signal of its input register. The input 
x1 drives the select line of a multiplexor which chooses the 
correct cofactor. 

The main advantage of this architecture is that it  applies to 
all logic functions. The input x1 in the example was chosen 
for the purpose illustration. In fact, any input X I ? .  . . , zn 
could have been selected. Unlike the architectures described 
earlier, we do not require that the inputs being disabled 
should be don’t-cares for the input conditions which we are 
precomputing. In other words, the inputs being disabled do not 
have to be in the observability don’t-care set. A disadvantage 
of this architecture is that we need to duplicate the registers 
for the inputs not being used to turn off part of the logic. On 
the other hand, no precomputation logic functions have been 
added to the circuit. 

The algorithm to select the best input for this architecture 
is also quite different. We will not discuss this algorithm in 
detail, except to mention that in this case, we are interested 
in finding the input that yields the most area efficient fzl  and 
fz functions. 

B. Combinational Logic Precomputation 

The architectures described so far apply only to sequential 
circuits. We now describe precomputation of combinational 
circuits. 

Suppose we have some combinational logic function f com- 
posed of two subfunctions A and B as shown in Fig. lS(a). 
Suppose we also want to precompute this function with the 
inputs 3:4 and 2 5 .  Fig. lS(b) shows how this can be accom- 
plished. For simplicity, pass transistors are shown, however, 
we have several choices as to what to use within the dotted 
circles instead of the pass transistors. 

Transmission Gates: Assume that transmission gates are 
used in place of the pass transistors in Fig. lS(b). The function 

X 4 -* +-- 
X 5 - - r r - $ +  

’W 
B 

--f 

- f  

(b) Final Network 
Fig. 15. Combinational logic precomputation. 

g with inputs x4 and 2 5  drives the transmission gates. As in 
the previous architectures, g = 91f. Hence, when g is a 
0, the transmission gates are turned off and the new values 
of logic block A are prevented from propagating into logic 
block B. The inputs x4 and x:, are also inputs to the logic 
block B just as in the original network in order to ensure that 
the output is set correctly. 

For the combinational architecture, there is an implied delay 
constraint, i.e., the transmission gates should be off before the 
new values of A are computed. In the example shown, the 
worst-case delay of the g block plus the arrival time of inputs 
x4 or x j  should be less than the best-case delay of logic block 
A plus the arrival time of the inputs ~ 1 ~ x 2 ,  or 2 3 .  The arrival 
time of an input is defined as the time at which the input settles 
to its steady state value [ 5 ] .  If the delay constraint is not met, 
then it may be necessary to delay the ~ 1 ~ x 2  and x3 inputs with 
respect to the 2 4  and 2 5  inputs in order to get the switching 
activity reduction in logic block B. 

Transparent Latches: A violation of the delay constraint 
described immediately above can result in nodes in the circuit 
being stuck at metastable states (halfway between the supply 
voltages) causing excessive power dissipation. In order to 
ensure that this does not occur, transparent latches can be 
used instead of transmission gates. This results in increased 
overhead for precomputation. Note that a violation of the delay 
constraint may cause glitching in the circuit, but the nodes will 
settle to the supply voltages. 

AND Gates: One can also replace the pass transistor with 
an AND gate. This will reduce switching activity, though not 
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as much as in the transparent latch case. This is because g 
may make a 0 + 1 transition during a clock cycle, possible 
causing unnecessary 1 -+ 0 transitions at the outputs of the 
AND gates. This option works best for percharged logic. 

VIII. CONCLUSION AND ONGOING WORK 

We have presented a method of precomputing the output 
response of a sequential circuit one clock cycle before the 
output is required, and exploited this knowledge to reduce 
power dissipation in the succeeding clock cycle. Several 
different architectures that utilize precomputation logic were 
presented. 

In a finite state machine there is typically a single register, 
whose inputs are combinational functions of the register out- 
puts. The precomputation architectures make no assumptions 
regarding feedback. For instance, RI and Ra in Fig. 2 can be 
the same register. 

Precomputation increases circuit area and can adversely 
impact circuit performance. In order to keep area and delay 
increases small, it is best to synthesize precomputation logic 
which depends on a small set of inputs. 

Precomputation works best when there are a small number 
of complex functions corresponding to the logic block A of 
Figs. 2 and 3. If the logic block has a large number of outputs, 
then it may be worthwhile to selectively apply precomputation- 
based power optimization to a small number of complex 
outputs. This selective partitioning will entail a duplication 
of combinational logic and registers, and the savings in power 
is offset by this duplication. 

Other precomputation architectures are being explored, in- 
cluding the architectures of Section VII, and those that rely 
on a history of previous input vectors. More work is re- 
quired in the automation of a logic design methodology that 
exploits multiplexor-based, combinational and multiple-cycle 
precomputation. 

ACKNOWLEDGMENT 

The authors would like to thank A. Chandrakasan for 
providing us with information regarding power dissipation in 
registers and P. Vanbekbergen for pointing out that transparent 
latches should be used in Fig. 15(b). 

REFERENCES 

P. Ashar, S. Devadas, and K. Keutzer, “Path-delay-fault testability 
properties of multiplexor-based networks,” Integrution, the VLSI J . ,  vol. 
15, no. 1, pp. 1-23, July 1993. 
R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang, “MIS: 
A multiple-level logic optimization system,” in IEEE Trans. Computer- 
Aided Design, vol. CAD-6, pp. 1062-1081, Nov. 1987. 
R. Bryant, “Graph-based algorithms for Boolean function manipulation,” 
IEEE Trans. Comput., vol. C-35, no. 8, pp. 677491, Aug. 1986. 
A. Chandrakasan, T. Sheng, and R. W. Brodersen. “Low power CMOS 
digital design,” in IEEEJ.  Solid-State Circ., pp. 473484,  Apr. 1992. 
S. Devadas, A. Ghosh, and K. Keutzer, Logic’ Swthesis. New York: 
McGraw Hill, 1994. 
A. Ghosh, S. Devadas, K. Keutzer, and J. White, “Estimation of average 
switching activity in combinational and sequential circuits,” in Proc. 
29th Design Automation ConJ, June 1992, pp. 253-259. 
L. Glasser and D. Dobberpuhl, The Design and Anulysis of V U /  Circuits. 
Reading, MA: Addison-Wesley, 1985. 

[8] J. Monteiro, S. Devadas, and A. Ghosh, “Retiming sequential circuits 
for low power,” in Proc. Int. Con$ Computer-Aided Design, Nov. 1993, 
pp. 398-402. 

[9] J. Monteiro, S .  Devadas, and B. Lin, “A methodology for efficient 
estimation of switching activity in sequential logic circuits,” in Proc. 
31st Design Automation Con$, June 1994, pp. 12-17. 

[lo] F. Najm, “Transition density, a stochastic measure of activity in dig- 
ital circuits,” in Proc. 28th Design Automation Con$, June 1991, pp. 
644-649. 

[ l l ]  K. Roy and S. Prasad, “SYCLOP: Synthesis of CMOS logic for low 
power applications,” in Proc. Int. Con$ Computer Design: V U I  in 
Computers and Processors, Oct. 1992, pp. 464-467. 

[121 A. Shen, A. Devadas, A. Ghosh, and K. Keutzer, “On average power dis- 
sipation and random pattern testability of combinational logic circuits,” 
in Proc. Int. Con$ Computer-Aided Design, Nov. 1992, pp. 402407. 

1131 C.-Y. Tsui, M. Pedram, and A. Despain, “Exact and approximate 
methods for switching activity estimation in sequential logic circuits,” 
in Proc. 31st Design Automation Cont. June 1994, pp. 18-23. 

Mazhar Alidina received the B.S. degree from 
Lehigh University in 1992 and the S.M. degree from 
the Massachusetts Institute of Technology in 1994, 
both in electrical engineering. 

He is currently a member of the Technical Staff 
with the Signal Processing and Integrated Circuit 
Design group of AT&T Bell Laboratories. His re- 
search interests are in low power design, CAD for 
low power, and VLSI design. 

Jose Monteiro was born in Lisbon, Portugal. He 
received the Engineer’s and Master’s degrees in 
electrical and computer engineering in 1989 and 
1992 respectively, from Instituto Superior T6cnico 
at the Technical University of Lisbon. 

He is currently working on the Ph.D. degree at the 
Massachusetts Institute of Technology in the area 
of power estimation and synthesis for low power of 
VLSI circuits. 

Srinivas Devadas (M’88) received the B. Tech degree in electrical engineer- 
ing from the Indian Institute of Technology, Madras in 1985 and the M.S. 
and Ph.D. degrees in electrical engineering from the University of California, 
Berkeley, in 1986 and 1988, respectively. 

Since August 1988, he has been at the Massachusetts Institute of Tech- 
nology, Cambridge, and is currently an Associate Professor of Electrical 
Engineering and Computer Science. His research interests span all aspects 
of synthesis of VLSI circuits, with emphasis on optimization techniques for 
synthesis at the logic, layout and architectural levels, testing of VLSI circuits, 
formal verification, hardwadsoftware co-design, design-for-testability meth- 
ods and interactions between synthesis and testability of VLSI systems. 

Dr. Devadas held the Analog Devices Career Development Chair of Elec- 
trical Engineering from 1989 to 1991. He has received five Best Paper awards 
at CAD conferences and journals, including the 1990 IEEE TRANSACTIONS ON 
CIRCUITS AND DEVICES Best Paper award. In 1992, he received a NSF Young 
Investigator Award. He has served on the technical program committees of 
several conferences and workshops including the International Conference 
on Computer Design, and the International Conference on Computer-Aided 
Design. He is a member of the ACM. 



436 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 2, NO. 4, DECEMBER 1994 

Abhuit Ghosh (M’91) received the B.Tech degree 
in electrical and electronics engineering from the 
Indian Institute of Technology, Kharagpur, in 1986. 
He received the M.S. and Ph.D. degrees in elec- 
trical engineering and computer science from the 
University of California at Berkeley in 1988 and 
1991, respectively. 

Since 1991, he has been a Senior Engineer at Mit- 
subishi Electric Research Laboratories, Inc., Sunny- 
vale, CA, conducting research in CAD for VLSI 
and system design. His research interests include 

all aspects of CAD for VLSI with special emphasis on logic synthesis, formal 
verification, testing, parallel processing, fault-tolerant computing, compiler 
optimization, low power design and synthesis, and electronic system design 
automation. 

Dr. Ghosh received the Best Paper award at the 27th IEEE Design 
Automation Conference, 1990. He is a member of ACM. 

Maria Papaefthymiou received the B.S. degree in 
electrical engineering from the California Institute 
of Technology in 1988 and the S.M. and Ph.D. 
degrees in computer science from the Massachusetts 
Institute of Technology in 1990 and 1993, respec- 
tively. 

Currently, he is an Assistant Professor of Elec- 
trical Engineering and Computer Science at Yale 
University, New Haven, CT. His research interests 
include algorithms, parallel computation, and VLSI 
design. 


