
CSEE W4823x Handout #27f
Prof. Steven Nowick November 10, 2016

Project #1 – I2C Master Controller:
Simulation, Submission, and Demo Information

This document outlines the required testing method, submission details, and demo information for
the I2C master controller of Project #1. Please be sure to read it carefully.

SUBMISSION DEADLINE: Your completed problem is due by 4:00 p.m. on Friday, November
18. You will have both a hardcopy and electronic submission for this problem. In addition you will
have a demo with Yichun Deng or Song Wang on Monday 11/21, Tuesday 11/22, Wednesday
11/23. See below for details.

Required Simulations: After modeling the two versions of the I2C master controller in VHDL
using the Quartus II CAD tool, you are to simulate your VHDL specification on a set of input
sequences using the guidelines provided below. During the demo, you will be asked to show the
output of these input sequences as well as a few other input sequences supplied by the CA.
Thoroughly test your design in advance, so that all input patterns applied by the CA work correctly.

Clock Periods and Initialization Requirements. Note the clock period of clk_hi for your simulation
should be 10ns.

IMPORTANT NOTE: Although you should follow the above guidelines for the required
simulations below, you still must be able to correctly handle cases where the master does not
immediately get activated, and other activity happens first on the bus.

Initialization Requirements. At time t=0, assume the master is inactive and in the appropriate initial
state, with all signals initialized to correct initial values. See Handout #27 and elsewhere for details
on initial signal values. Also, at t=0, assume that clk_hi has a rising clock edge, starting the first
local clock cycle.

Next, assume that the master is activated (i.e. wins arbitration) immediately afterwards. In
particular, in the middle of the first local clock period (at time=2ns), the local counter input
“arb_win” is asserted to 1 (for 1 local clock cycle), which begins the activation of the master
controller. Follow Handout #27 and elsewhere, for details on the steps and timing of the resulting
initialization.

Finally, the master should broadcast a START symbol as soon as possible, immediately followed by
a slave’s address, for each of the simulations below.

The SCL clock period is determined as follows: assume that the local counter always counts 5 local
clock cycles between a transition on its input “cnt_enable” to a transition on its “SCL_toggle”
output.

IMPORTANT NOTE: Although you should follow the above guidelines for the required
simulations below, you still must be able to correctly handle cases where the master does not
immediately get activated, and other activity happens first on the bus.

You are asked to create the following input sequences for the following cases for master as
transmitter in error-free mode (i.e. write mode):

The following simulations should be performed on your version #1 design (but CA’s may also test it
on your version #2 design):

(i) After observing the START symbol, the master sends address “1101001”, which is the address
of a slave, and the 8th bit (0) indicates write, and the slave then responds with an ACK symbol. The
master sends a single byte of data, which is immediately followed by an appropriate
acknowledgment. The entire transaction is then terminated with a STOP symbol.

(ii) After observing the START symbol, the master sends address “1000010”, which is the address
of a slave, and the 8th bit (0) indicates write, and the slave then responds with an ACK symbol. The
master then sends two or more bytes of data. Each byte of data is appropriately acknowledged, and
the entire transaction is terminated with a STOP symbol.

You are asked to create the following input sequences for the following cases for master as
receiver in error-free mode (i.e. read mode):

The following simulations should be performed on your version #1 design (but CA’s may also test it
on your version #2 design):

(iii) After sending the START symbol, the master sends "1010111", which is the address of a slave,
and the 8th bit (1) indicates read, and the slave responds by sending an ACK symbol. Then the slave
transmits one byte of data. After the slave receives an appropriate acknowledgment to this data
byte, the entire transaction is terminated with a STOP symbol.

(iv) After sending the START symbol, the master sends "0111111", which is the address of a slave,
and the 8th bit (1) indicates read, and the slave responds by sending an ACK symbol. Then the slave
sends two bytes of data. The slave receives an appropriate acknowledgment for each of the data
bytes, and the entire transaction is terminated with a STOP symbol.

You are asked to create the following input sequences for the following cases for master as
transmitter with error handling mode (i.e. write mode):

The following simulations should be performed on your version #2 design:

(v) After sending the START symbol, the master sends address “0101011”, which is the address of
a slave, and the 8th bit (0) indicates write. The slave responds by sending an ACK symbol. The
master sends a single byte of data with correct parity, which is immediately followed by an
appropriate acknowledgment, and the entire transaction is terminated with STOP symbol.

(vi) After sending the START symbol, the master sends address “0101011”, which is the address of
a slave, and the 8th bit (0) indicates write. The slave responds by sending an ACK symbol. The
master then sends one data byte with correct parity. The data byte is appropriately acknowledged.
After that, the master sends the second data byte with wrong parity. The slave then responds with
an appropriate acknowledgment. This data byte is then correctly retransmitted. Finally, the master
sends the third data byte with correct parity, which is immediately followed by an appropriate
acknowledgment, and then the entire transaction is then terminated with a STOP symbol.

(vii) After sending the START symbol, the master sends address “0101011”, which is the address of
a slave, and the 8th bit (0) indicates write. The slave responds by sending an ACK symbol. The
master sends a single byte of data with correct parity, which is immediately followed by an
appropriate acknowledgment. After that, the master sends one data byte with wrong parity. The
slave then responds with an appropriate acknowledgment. This last data byte is then incorrectly
retransmitted. The entire transaction is then terminated.

You are asked to create the following input sequences for the following cases for master as
receiver with error handling (i.e. read mode):

The following simulations should be performed on your version #2 design:

(viii) After sending the START symbol, the master sends address “0101011”, which is the address
of a slave, and the 8th bit (0) indicates write. The slave responds by sending an ACK symbol. The
slave transmits a single data byte with wrong parity. The master then responds with an appropriate
acknowledgment. This data byte is then correctly retransmitted, and is immediately followed by an
appropriate acknowledgment, and the entire transaction is terminated with STOP symbol.

(ix) After sending the START symbol, the master sends address “0101011”, which is the address of
the slave, and the 8th bit (0) indicates write. The slave responds by sending an ACK symbol. The
slave then sends one data byte with wrong parity. The master then responds with an appropriate
acknowledgment. This data byte is then correctly retransmitted. Finally, the slave sends a second
data byte with correct parity, which is immediately followed by an appropriate acknowledgment,
and then the entire transaction is then terminated with a STOP symbol.

(x) Design your own input sequence which test something unique in your design not previously test
in (i)-(ix), for either master as transmitter or receiver. Do not just vary the address or the data bytes
being sent but instead, come up with a creative input case to test something meaningful and the
correctness of your design.

Remember, you are responsible for ALL assumptions, clarifications, and information posted on
Handout #27e (FAQ), as well as Piazza discussion and other guidelines presented in class, as
well as Handouts #27, 27a, 27b, 27c and 27d, and other required web handouts on I2C, so be
sure to read all postings carefully.

What to turn in?: Turn in the following written and electronic parts for Project #1:

(a) The symbolic state diagrams of the Moore FSMs for both an error-free master
controller (v. #1) and an error-tolerant master controller (v. #2), neatly labeled,
either handwritten or using a graphical editor;
IMPORTANT NOTE: If your drawing is messy, hard to read, or poorly labeled, it
will be difficult for the CA’s to follow, and points will be deducted. The state
diagram should be drawn as clearly as possible (i.e. as if it were to be presented for
management at a design review). Also, you should label small groups of states
(with a dotted or colored box around each small group) to highlight which portion
of your state diagram is detecting a 0 data input, a 1 data input, an address, an
ACK/NACK symbol, a START symbol, and a STOP symbol. In addition, clearly
label and circle larger regions of the FSM, indicating ‘read mode’, ‘write mode’,
and error-handling scenarios. That is, annotate small portions of your FSM
diagram to clarify what part of the protocol is being handled by which states.

(b) Printout of VHDL code for your Moore FSMs for the two versions of the master
controller (with comments inserted to clearly document the different portions of the
state diagrams, see ‘important note’ of (a) above);

(c) Printout of waveforms that result from your simulations for your ten test sequences
(i)-(x) above, as well as text details on each simulation (which data bytes used, etc.);

(d) A discussion explaining your design experiences, testing methods, assumptions and
challenges (0.5-1.0 pages).

(e) **Electronic copies of your VHDL code and waveforms in a compressed .tar or .zip
file named “CSEE4823_proj1_last_name_last_name” (fill in last_name with the last
name of each group member). You need to upload the compressed file on
Courseworks.** Details of electronic submission will be announced shortly.

Where to turn in the hardcopy parts of the assignment? (parts (a)-(d)). Hand these in either at
start of class to Prof. Nowick on Thursday November 17, or to one of the CAs by 4pm on Friday,
November 18.

Where to send the electronic part of the assignment? (part (e)) Must by submitted on courseworks
by 4pm on Friday, November 18 (details announced shortly).

Demo sign-up procedure: You must reserve a 30-minute demo time with a CA. An online ‘doodle’
URL signup will be made available shortly. All group members must be present at the demo. The
demo will take place in the Embedded Systems Lab (1235 Mudd) on Monday 11/21, Tuesday
11/22, Wednesday 11/23. The exact time slots will be disclosed shortly.

What to bring to the demo?: Bring a copy of your written parts (parts (a)-(d)) above. Of course,
these written parts must already be handed in by 4pm on Friday November 18.

