
Midterm, COMS 4705

Name:

15 10 10 15 15

Good luck!
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Part #1 15 points

Consider the following definition of bigram language models (it is very similar
to the definition of trigram language models seen in class):

Definition 1 (Bigram Language Model) A bigram language model consists
of a finite set V, and a parameter

q(w|v)

for each bigram v, w such that w ∈ V ∪ {STOP}, and v ∈ V ∪ {*}. The value
for q(w|v) can be interpreted as the probability of seeing the word w immediately
after the word v. For any sentence x1 . . . xn where xi ∈ V for i = 1 . . . (n− 1),
and xn = STOP, the probability of the sentence under the bigram language
model is

p(x1 . . . xn) =

n∏
i=1

q(xi|xi−1)

where we define x0 = *.

Now assume that our vocabulary V = {the}, that is, the vocabulary has a single
word the. We would like to define the parameters of a bigram language model
such that

p(STOP) = 0

p(the STOP) = 0.4

p(the the STOP) = 0.4× 0.6

p(the the the STOP) = 0.4× 0.62

. . .

(In general the probability of a sentence which has the word the n times, for
n ≥ 1, is 0.4× 0.6n−1.)

Question 1 (7 points) Write down the parameters of the language model

such that it gives the above distribution over sentences (i.e., p(x) = 0.4×0.6n−1

if x is a sentence of n consecutive the’s, followed by the STOP symbol).
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Question 2 (8 points) Write down a PCFG such that:

1. Any sentence consisting of the word the n times in a row, where n ≥ 1,
has probability

0.4× 0.6n−1

2. Any other sentence has probability 0.

(I.e., this is the same distribution as in the last question)
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Part #2 (10 points)

Consider the following parse tree:

S

NP

D

the

N

man

VP

V

saw

NP

D

the

N

dog

And in addition consider the following rules that can be used to lexicalize the
parse tree (note that these rules do not necessarily make sense from a linguistic
perspective):

• For the rule S -> NP VP, we define NP to be the head

• For the rule NP -> D N, we define D to be the head

• For the rule VP -> V NP, we define V to be the head

Recall that for a lexicalized PCFG in Chomsky Normal form, each rule takes
one of the following forms:

• X(h) →1 Y1(h)Y2(m) where X,Y1, Y2 are non-terminals, and h,m are
words

• X(h) →2 Y1(m)Y2(h) where X,Y1, Y2 are non-terminals, and h,m are
words

• X(h)→ h where X is a non-terminal, and h is a word
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Question 3 (10 points) If we lexicalize the above parse tree, then build a

lexicalized PCFG with all rules seen in the tree, what is the complete set of
rules in the grammar? (You do not need to include probabilities for the rules,
just list the rules in the grammar.)
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Part #3 (10 points)

Consider a trigram HMM tagger with:

• The set K of possible tags equal to {D, N, V}

• The set V of possible words equal to {the, dog, barks}

• The following parameters:

q(D|*, *) = 1

q(N|*, D) = 1

q(V|D, N) = 1

q(STOP|N, V) = 1

e(the|D) = 1

e(dog|N) = 0.4

e(barks|N) = 0.6

e(dog|V) = 0.1

e(barks|V) = 0.9

with all other parameter values equal to 0.

Question 4 (10 points) Write down the set of all pairs of sequences x1 . . . xn, y1 . . . yn+1

such that the following properties hold:

• p(x1 . . . xn, y1 . . . yn+1) > 0

• xi ∈ V for all i ∈ 1 . . . n

• yi ∈ K for all i ∈ 1 . . . n, and yn+1 = STOP
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Input: a sentence x1 . . . xn, parameters q(s|u, v) and e(x|s).
Definitions: Define K to be the set of possible tags. Define K−1 = K0 = {*}, and
Kk = K for k = 1 . . . n.
Initialization: Set π(0, *, *) = 1.
Algorithm:

• For k = 1 . . . n,

– For u ∈ Kk−1, v ∈ Kk,

π(k, u, v) = max
w∈Kk−2

(π(k − 1, w, u)× q(v|w, u)× e(xk|v))

• Return maxu∈Kn−1,v∈Kn
(π(n, u, v)× q(STOP|u, v))

Figure 1: The basic Viterbi Algorithm.

Part #4 15 points

Consider a trigram HMM, as introduced in class. We saw that the Viterbi
algorithm could be used to find

max
y1...yn+1

p(x1 . . . xn, y1 . . . yn+1)

where the max is taken over all sequences y1 . . . yn+1 such that yi ∈ K for
i = 1 . . . n, and yn+1 = STOP. (Recall that K is the set of possible tags in the
HMM.) In a trigram tagger we assume that p takes the form

p(x1 . . . xn, y1 . . . yn+1) =

n+1∏
i=1

q(yi|yi−2, yi−1)

n∏
i=1

e(xi| yi) (1)

Recall that we have assumed in this definition that y0 = y−1 = *, and yn+1 =
STOP. The Viterbi algorithm is shown in figure 1.

Now consider a “skip” tagger, where p takes the form

p(x1 . . . xn, y1 . . . yn+1) =

n+1∏
i=1

q(yi|yi−2)

n∏
i=1

e(xi|yi) (2)

We have assumed in this definition that y0 = y−1 = y−2 = *, and yn+1 = STOP.
Note that a “skip” tagger replaces the term q(yi|yi−2, yi−1) in a regular trigram
tagger with

q(yi|yi−2)

We call it a skip tagger because yi−1 is now omitted from the conditioning
information.
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Question 5 (15 points) In the box below, give a version of the Viterbi

algorithm that takes as input a sentence x1 . . . xn, and finds

max
y1...yn+1

p(x1 . . . xn, y1 . . . yn+1)

for a skip tagger, as defined in Eq. 2. (Note: it is fine if the runtime of your
algorithm is O(n|K|3).)

Input: a sentence x1 . . . xn, parameters q(w|v) and e(x|s).
Definitions: Define K to be the set of possible tags. Define K−1 = K0 = {*}, and
Kk = K for k = 1 . . . n.
Initialization:

Algorithm:

Return:

4705 Midterm page 8 of 10



Part #5 (15 points)

In this question our goal is to design an algorithm that takes a sentence s and
a context-free grammar in Chomsky normal form as input, and as its output
returns the number of parse trees for the sentence s as its output.

For example, if s is the sentence a a a, and the context-free grammar is

X → X X
X → a

with start symbol X, the algorithm should return the value 2, because there are
two parses for the sentence under this grammar:

X

X

a

X

X

a

X

a

X

X

X

a

X

a

X

a
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Question 6 (15 points) Complete the following algorithm so that it returns

the number of possible parse trees for the input sentence s.

Input: a sentence s = x1 . . . xn, a context-free grammar G = (N,Σ, S,R).
Initialization:
For all i ∈ {1 . . . n}, for all X ∈ N ,

π(i, i,X) =

{
1 if X → xi ∈ R
0 otherwise

Algorithm:

• For l = 1 . . . (n− 1)

– For i = 1 . . . (n− l)
∗ Set j = i+ l

∗ For all X ∈ N , calculate

π(i, j,X) =
∑

X→Y Z∈R,

s∈{i...(j−1)}

︸ ︷︷ ︸
COMPLETE THE DEFINITION HERE

Output: Return π(1, n, S)

4705 Midterm page 10 of 10


