Quiz 1, COMS 4705

Name:

30	10	15	25

Good luck!

Input: a sentence $x_{1} \ldots x_{n}$, parameters $q(s \mid u, v)$ and $e(x \mid s)$.
Initialization: Set $\pi\left(0,,^{*}, *\right)=1$, and $\pi(0, u, v)=0$ for all (u, v) such that $u \neq{ }^{*}$ or $v \neq{ }^{*}$.
Algorithm:

- For $k=1 \ldots n$,
- For $u \in \mathcal{K}, v \in \mathcal{K}$,

$$
\pi(k, u, v)=\max _{w \in \mathcal{K}}\left(\pi(k-1, w, u) \times q(v \mid w, u) \times e\left(x_{k} \mid v\right)\right)
$$

- Return $\max _{u \in \mathcal{K}, v \in \mathcal{K}}(\pi(n, u, v) \times q(\operatorname{STOP} \mid u, v))$

Figure 1: The Viterbi algorithm for trigram HMM taggers.
Part \#1 30 points

Consider a trigram HMM, as introduced in class. We saw that the Viterbi algorithm could be used to find

$$
\max _{y_{1} \ldots y_{n+1}} p\left(x_{1} \ldots x_{n}, y_{1} \ldots y_{n+1}\right)
$$

where the max is taken over all sequences $y_{1} \ldots y_{n+1}$ such that $y_{i} \in \mathcal{K}$ for $i=1 \ldots n$, and $y_{n+1}=$ STOP. (Recall that \mathcal{K} is the set of possible tags in the HMM.) In a trigram tagger we assume that p takes the form

$$
\begin{equation*}
p\left(x_{1} \ldots x_{n}, y_{1} \ldots y_{n+1}\right)=\prod_{i=1}^{n+1} q\left(y_{i} \mid y_{i-2}, y_{i-1}\right) \prod_{i=1}^{n} e\left(x_{i} \mid y_{i}\right) \tag{1}
\end{equation*}
$$

Recall that we have assumed in this definition that $y_{0}=y_{-1}=^{*}$, and $y_{n+1}=$ STOP. The Viterbi algorithm is shown in figure 1.

Now consider a four-gram tagger, where p takes the form

$$
\begin{equation*}
p\left(x_{1} \ldots x_{n}, y_{1} \ldots y_{n+1}\right)=\prod_{i=1}^{n+1} q\left(y_{i} \mid y_{i-3}, y_{i-2}, y_{i-1}\right) \prod_{i=1}^{n} e\left(x_{i} \mid y_{i}\right) \tag{2}
\end{equation*}
$$

We have assumed in this definition that $y_{0}=y_{-1}=y_{-2}=^{*}$, and $y_{n+1}=$ STOP.

Question 1 (15 points) In the box below, give a version of the Viterbi algorithm that takes as input a sentence $x_{1} \ldots x_{n}$, and finds

$$
\max _{y_{1} \ldots y_{n+1}} p\left(x_{1} \ldots x_{n}, y_{1} \ldots y_{n+1}\right)
$$

for a four-gram tagger, as defined in Eq. 2.
Input: a sentence $x_{1} \ldots x_{n}$, parameters $q(w \mid t, u, v)$ and $e(x \mid s)$.
Initialization:

Algorithm:

Question $2(15$ points) In the box below, give a version of the Viterbi algorithm that takes as input an integer n, and finds

$$
\max _{y_{1} \ldots y_{n+1}, x_{1} \ldots x_{n}} p\left(x_{1} \ldots x_{n}, y_{1} \ldots y_{n+1}\right)
$$

for a trigram tagger, as defined in Eq. 1. Hence the input to the algorithm is an integer n, and the output from the algorithm is the highest scoring pair of sequences $x_{1} \ldots x_{n}, y_{1} \ldots y_{n+1}$ under the model.

Input: an integer n, parameters $q(w \mid u, v)$ and $e(x \mid s)$.
Initialization:

Algorithm:
Part \#2
10 points

Consider the lexicalized tree below:

Question 3 (10 points) Complete the head-finding rules below that would give this lexicalized tree:

For $S \rightarrow$ NP VP choose VP as the head
For NP \rightarrow D N choose as the head
For VP \rightarrow VP PP choose as the head
For VP \rightarrow V NP choose as the head
For PP \rightarrow IN NP choose as the head

Consider the following definition of bigram language models (it is very similar to the definition of trigram language models seen in class):

Definition 1 (Bigram Language Model) A bigram language model consists of a finite set \mathcal{V}, and a parameter

$$
q(w \mid v)
$$

for each bigram v, w such that $w \in \mathcal{V} \cup\{S T O P\}$, and $v \in \mathcal{V} \cup\{$ * $\}$. The value for $q(w \mid v)$ can be interpreted as the probability of seeing the word w immediately after the word v. For any sentence $x_{1} \ldots x_{n}$ where $x_{i} \in \mathcal{V}$ for $i=1 \ldots(n-1)$, and $x_{n}=S T O P$, the probability of the sentence under the bigram language model is

$$
p\left(x_{1} \ldots x_{n}\right)=\prod_{i=1}^{n} q\left(x_{i} \mid x_{i-1}\right)
$$

where we define $x_{0}=*$.

Now consider the following two language models:

Language Model 1

$\mathcal{V}=\{t h e, \operatorname{dog}\}$
$q($ the $\mid *)=q(\operatorname{dog} \mid$ the $)=q(S T O P \mid \operatorname{dog})=1$
All other q parameters are equal to 0 .

Language Model 2

$\mathcal{V}=\{$ the $, a, d o g\}$
$q($ the $\mid *)=q(a \mid *)=0.5$
$q(\operatorname{dog} \mid a)=q(\operatorname{dog} \mid t h e)=q(S T O P \mid \operatorname{dog})=1$
All other q parameters are equal to 0 .

Question 4 (5 points) For language model 1, list all sentences $x_{1} \ldots x_{n}$ such that $p\left(x_{1} \ldots x_{n}\right)>0$. For each sentence, write down its probability under language model 1.

Question 5 (5 points) For language model 2, list all sentences $x_{1} \ldots x_{n}$ such that $p\left(x_{1} \ldots x_{n}\right)>0$. For each sentence, write down its probability under language model 2.

Question 6 (5 points) Now assume that we have a test sentence consisting of a single sentence,
the dog STOP

Which language model (model 1 or 2) gives lower perplexity on this test set?

Consider a PCFG with the following rules

```
S }->\textrm{V N
S }->\textrm{DN
D }->\textrm{a
D }->\mathrm{ the
N }->\mathrm{ dog
V }->\mathrm{ saw
V }->\mathrm{ like
```

and the following parameters:

```
q(S }->\mathrm{ V N ) = 0.6
q(S -> D N) = 0.4
q(D }->\textrm{a})=0.
q(D }->\mathrm{ the ) = 0.8
q(N }->\textrm{Nog})=
q(V }->\mathrm{ saw ) = 0.6
q(V }->\mathrm{ like ) = 0.4
```

For any sentence x, define $\mathcal{T}(x)$ to be the set of parse trees for x, and define

$$
p(x)=\sum_{t \in \mathcal{T}(x)} p(t)
$$

where $p(t)$ is the probability of parse tree t under the PCFG shown above.
Question 7 (10 points) List all sentences x such that $p(x)>0$, where $p(x)$ is defined through the above PCFG. For each sentence, write down its probability.

Question 8 (15 points) A bigram language model has the following definition:

Definition 2 (Bigram Language Model) A bigram language model consists of a finite set \mathcal{V}, and a parameter

$$
q(w \mid v)
$$

for each bigram v, w such that $w \in \mathcal{V} \cup\{S T O P\}$, and $v \in \mathcal{V} \cup\left\{{ }^{*}\right\}$. The value for $q(w \mid v)$ can be interpreted as the probability of seeing the word w immediately after the word v. For any sentence $x_{1} \ldots x_{n}$ where $x_{i} \in \mathcal{V}$ for $i=1 \ldots(n-1)$, and $x_{n}=S T O P$, the probability of the sentence under the bigram language model is

$$
p\left(x_{1} \ldots x_{n}\right)=\prod_{i=1}^{n} q\left(x_{i} \mid x_{i-1}\right)
$$

where we define $x_{0}=*$.

Define a bigram language model that gives the same probability distribution $p(x)$ over sentences as the PCFG shown above. The vocabulary in the language model should be $\mathcal{V}=\{\mathrm{a}$, the, dog, saw, like $\}$. You should specify the parameters of the language model.

