## Quiz 1, COMS 4705

Name:

| 10 | 30 | 30 | 20 |
| :--- | :--- | :--- | :--- |
|  |  |  |  |

Good luck!

## Part \#1

 (10 points)Question 1 ( 10 points) We define a PCFG where non-terminal symbols are $\{S, A, B\}$, the terminal symbols are $\{a, b\}$, and the start non-terminal (the nonterminal always at the root of the tree) is $S$. The PCFG has the following rules:

| Rule | Probability |
| :--- | :--- |
| $S \rightarrow S S$ | 0.3 |
| $S \rightarrow A S$ | 0.2 |
| $S \rightarrow B B$ | 0.5 |
| $A \rightarrow a$ | 0.2 |
| $A \rightarrow b$ | 0.8 |
| $B \rightarrow a$ | 0.4 |
| $B \rightarrow b$ | 0.6 |

For the input string abab, show two possible parse trees under this PCFG, and show how to calculate their probability.

Input: a sentence $x_{1} \ldots x_{n}$, parameters $q(s \mid u, v)$ and $e(x \mid s)$.
Initialization: Set $\pi\left(0,{ }^{*}, *\right)=1$, and $\pi(0, u, v)=0$ for all $(u, v)$ such that $u \neq *$ or $v \neq *$.

## Algorithm:

- For $k=1 \ldots n$,
- For $u \in \mathcal{K}, v \in \mathcal{K}$,

$$
\pi(k, u, v)=\max _{w \in \mathcal{K}}\left(\pi(k-1, w, u) \times q(v \mid w, u) \times e\left(x_{k} \mid v\right)\right)
$$

- Return $\max _{u \in \mathcal{K}, v \in \mathcal{K}}(\pi(n, u, v) \times q(\operatorname{STOP} \mid u, v))$

Figure 1: The Viterbi algorithm for trigram HMM taggers.
Part \#2 30 points

Consider a trigram HMM, as introduced in class. We saw that the Viterbi algorithm could be used to find

$$
\max _{y_{1} \ldots y_{n+1}} p\left(x_{1} \ldots x_{n}, y_{1} \ldots y_{n+1}\right)
$$

where the max is taken over all sequences $y_{1} \ldots y_{n+1}$ such that $y_{i} \in \mathcal{K}$ for $i=1 \ldots n$, and $y_{n+1}=$ STOP. (Recall that $\mathcal{K}$ is the set of possible tags in the HMM.) In a trigram tagger we assume that $p$ takes the form

$$
\begin{equation*}
p\left(x_{1} \ldots x_{n}, y_{1} \ldots y_{n+1}\right)=\prod_{i=1}^{n+1} q\left(y_{i} \mid y_{i-2}, y_{i-1}\right) \prod_{i=1}^{n} e\left(x_{i} \mid y_{i}\right) \tag{1}
\end{equation*}
$$

Recall that we have assumed in this definition that $y_{0}=y_{-1}=^{*}$, and $y_{n+1}=$ STOP. The Viterbi algorithm is shown in figure 1.

Now consider a bigram HMM tagger, where we instead have the following definition:

$$
\begin{equation*}
p\left(x_{1} \ldots x_{n}, y_{1} \ldots y_{n+1}\right)=\prod_{i=1}^{n+1} q\left(y_{i} \mid y_{i-1}\right) \prod_{i=1}^{n} e\left(x_{i} \mid y_{i}\right) \tag{2}
\end{equation*}
$$

where $y_{0}=y_{-1}=^{*}$, and $y_{n+1}=$ STOP. The parameters of the bigram model take the form $q(s \mid v)$ and $e(x \mid s)$. Note that we have replaced $q\left(y_{i} \mid y_{i-2}, y_{i-1}\right)$ with $q\left(y_{i} \mid y_{i-1}\right)$ in this definition, so intuitively each state only depends on the previous state.

Question 2 (30 points) In the box below, give a version of the Viterbi algorithm that finds

$$
\max _{y_{1} \ldots y_{n+1}} p\left(x_{1} \ldots x_{n}, y_{1} \ldots y_{n+1}\right)
$$

for a bigram HMM tagger, as defined in Eq. 2. You will get 30 points on the question if you have a correct algorithm, which runs in $O\left(n|\mathcal{K}|^{2}\right)$ time, where $n$ is the length of the sentence, and $|\mathcal{K}|$ is the number of tags. You will get a maximum of 15 points on the question if you have a correct algorithm, but it runs in slower than $O\left(n|\mathcal{K}|^{2}\right)$ time.

Input: a sentence $x_{1} \ldots x_{n}$, parameters $q(s \mid v)$ and $e(x \mid s)$. Initialization:

## Algorithm:

## Return:

Consider the CKY algorithm for finding the maximum probability for any tree when given as input a sequence of words $x_{1}, x_{2}, \ldots, x_{n}$. As usual, we use $N$ to denote the set of non-terminals in the grammar, and $S$ to denote the start symbol.

The base case in the recursive definition is as follows: for all $i=1 \ldots n$, for all $X \in N$,

$$
\pi(i, i, X)= \begin{cases}q\left(X \rightarrow x_{i}\right) & \text { if } X \rightarrow x_{i} \in R \\ 0 & \text { otherwise }\end{cases}
$$

and the recursive definition is as follows: for all $(i, j)$ such that $1 \leq i<j \leq n$, for all $X \in N$,

$$
\pi(i, j, X)=\max _{\substack{X \rightarrow Y Z \in R, s \in\{i \ldots(j-1)\}}}(q(X \rightarrow Y Z) \times \pi(i, s, Y) \times \pi(s+1, j, Z))
$$

Finally, we return

$$
\pi(1, n, S)=\max _{t \in \mathcal{T}_{G}(s)} p(t)
$$

Now assume that we want to find the maximum probability for any left-branching tree for a sentence. Here are some example left-branching trees:

(Question continued on next page)



It can be seen that in left-branching trees, whenever a rule of the form $\mathrm{X} \rightarrow \mathrm{Y} \mathrm{Z}$ is seen in the tree, then the non-terminal $Y$ must directly dominate a terminal symbol.

Question 3 (30 points) Complete the recursive definition below, so that the algorithm returns the maximum probability for any left-branching tree underlying a sentence $x_{1}, x_{2}, \ldots, x_{n}$.

Base case: for all $i=1 \ldots n$, for all $X \in N$,

$$
\pi(i, i, X)= \begin{cases}q\left(X \rightarrow x_{i}\right) & \text { if } X \rightarrow x_{i} \in R \\ 0 & \text { otherwise }\end{cases}
$$

Recursive case: (Complete below)

## Return:

$$
\pi(1, n, S)=\max _{t \in \mathcal{T}_{G}(s)} p(t) x
$$

In lecture we saw how to build trigram language models using discounting methods, and the Katz back-off definition. We're now going to build a four-gram language model based on these ideas. A four-gram language model gives estimates

$$
q(w \mid t, u, v)
$$

where $t, u, v, w$ is any sequence of four words.
Assume we have a corpus, and that $c(t, u, v, w)$ is the number of times the four-gram $t, u, v, w$ is seen in the data. Then take the following definitions:

$$
\mathcal{A}(t, u, v)=\{w: c(t, u, v, w)>0\}
$$

and

$$
\mathcal{B}(t, u, v)=\{w: c(t, u, v, w)=0\}
$$

Define $c^{*}(t, u, v, w)$ to be the discounted count for the four-gram $(t, u, v, w)$, as follows:

$$
c^{*}(t, u, v, w)=c(t, u, v, w)-0.5
$$

Assume that for any trigram $u, v, w, q_{B O}(w \mid u, v)$ is an estimate of the trigram probability, using the backed-off method described in lecture.

Finally, we define the four-gram model as

$$
q_{B O}(w \mid t, u, v)= \begin{cases}\frac{c^{*}(t, u, v, w)}{c(t, u, v)} & \text { If } w \in \mathcal{A}(t, u, v) \\ \alpha(t, u, v) \times \frac{q_{B O}(w \mid u, v)}{\sum_{w \in \mathcal{B}(t, u, v)} q_{B O}(w \mid u, v)} & \text { If } w \in \mathcal{B}(t, u, v)\end{cases}
$$

Question 4 (20 points) How would you define

$$
\alpha(t, u, v)
$$

?

