Quiz 1, COMS 4705

Name:

10	30	30	20

Good luck!

Part #1

(10 points)

Question 1 (10 points) We define a PCFG where non-terminal symbols are $\{S, A, B\}$, the terminal symbols are $\{a, b\}$, and the start non-terminal (the non-terminal always at the root of the tree) is S. The PCFG has the following rules:

Rule	Probability
$S \to S S$	0.3
$S \to A S$	0.2
$S \to B B$	0.5
$A \to a$	0.2
$A \rightarrow b$	0.8
$B \to a$	0.4
$B \rightarrow b$	0.6

For the input string *abab*, show two possible parse trees under this PCFG, and show how to calculate their probability.

Input: a sentence $x_1 \dots x_n$, parameters q(s|u, v) and e(x|s). Initialization: Set $\pi(0, *, *) = 1$, and $\pi(0, u, v) = 0$ for all (u, v) such that $u \neq *$ or $v \neq *$. Algorithm: • For $k = 1 \dots n$, - For $u \in \mathcal{K}, v \in \mathcal{K}$, $\pi(k, u, v) = \max_{w \in \mathcal{K}} (\pi(k - 1, w, u) \times q(v|w, u) \times e(x_k|v))$ • Return $\max_{u \in \mathcal{K}, v \in \mathcal{K}} (\pi(n, u, v) \times q(\text{STOP}|u, v))$

Figure 1: The Viterbi algorithm for trigram HMM taggers.

Part #2

30 points

Consider a trigram HMM, as introduced in class. We saw that the Viterbi algorithm could be used to find

$$\max_{y_1\ldots y_{n+1}} p(x_1\ldots x_n, y_1\ldots y_{n+1})$$

where the max is taken over all sequences $y_1 \ldots y_{n+1}$ such that $y_i \in \mathcal{K}$ for $i = 1 \ldots n$, and $y_{n+1} = \text{STOP}$. (Recall that \mathcal{K} is the set of possible tags in the HMM.) In a trigram tagger we assume that p takes the form

$$p(x_1 \dots x_n, y_1 \dots y_{n+1}) = \prod_{i=1}^{n+1} q(y_i | y_{i-2}, y_{i-1}) \prod_{i=1}^n e(x_i | y_i)$$
(1)

Recall that we have assumed in this definition that $y_0 = y_{-1} = *$, and $y_{n+1} =$ STOP. The Viterbi algorithm is shown in figure 1.

Now consider a **bigram** HMM tagger, where we instead have the following definition:

$$p(x_1 \dots x_n, y_1 \dots y_{n+1}) = \prod_{i=1}^{n+1} q(y_i | y_{i-1}) \prod_{i=1}^n e(x_i | y_i)$$
(2)

where $y_0 = y_{-1} = *$, and $y_{n+1} =$ STOP. The parameters of the bigram model take the form q(s|v) and e(x|s). Note that we have replaced $q(y_i|y_{i-2}, y_{i-1})$ with $q(y_i|y_{i-1})$ in this definition, so intuitively each state only depends on the previous state.

 $\frac{\text{Question 2 (30 points)}}{\text{algorithm that finds}} \text{ In the box below, give a version of the Viterbi}$

$$\max_{y_1\dots y_{n+1}} p(x_1\dots x_n, y_1\dots y_{n+1})$$

for a bigram HMM tagger, as defined in Eq. 2. You will get 30 points on the question if you have a correct algorithm, which runs in $O(n|\mathcal{K}|^2)$ time, where n is the length of the sentence, and $|\mathcal{K}|$ is the number of tags. You will get a maximum of 15 points on the question if you have a correct algorithm, but it runs in slower than $O(n|\mathcal{K}|^2)$ time.

Input: a sentence $x_1 \dots x_n$, parameters q(s|v) and e(x|s). Initialization: Algorithm: **Return:**

30 points

Consider the CKY algorithm for finding the maximum probability for any tree when given as input a sequence of words x_1, x_2, \ldots, x_n . As usual, we use Nto denote the set of non-terminals in the grammar, and S to denote the start symbol.

The base case in the recursive definition is as follows: for all $i = 1 \dots n$, for all $X \in N$,

$$\pi(i, i, X) = \begin{cases} q(X \to x_i) & \text{if } X \to x_i \in R \\ 0 & \text{otherwise} \end{cases}$$

and the recursive definition is as follows: for all (i, j) such that $1 \le i < j \le n$, for all $X \in N$,

$$\pi(i,j,X) = \max_{\substack{X \to YZ \in R, \\ s \in \{i\dots(j-1)\}}} \left(q(X \to YZ) \times \pi(i,s,Y) \times \pi(s+1,j,Z) \right)$$

Finally, we return

$$\pi(1, n, S) = \max_{t \in \mathcal{T}_G(s)} p(t)$$

Now assume that we want to find the maximum probability for any *left-branching* tree for a sentence. Here are some example left-branching trees:

(Question continued on next page)

It can be seen that in left-branching trees, whenever a rule of the form $X \to Y Z$ is seen in the tree, then the non-terminal Y must directly dominate a terminal symbol.

Question 3 (30 points) Complete the recursive definition below, so that the algorithm returns the maximum probability for any **left-branching** tree underlying a sentence x_1, x_2, \ldots, x_n .

Base case: for all i = 1 ... n, for all $X \in N$, $\pi(i, i, X) = \begin{cases} q(X \to x_i) & \text{if } X \to x_i \in R \\ 0 & \text{otherwise} \end{cases}$ Recursive case: (Complete below) Return: $\pi(1, n, S) = \max_{t \in T_G(s)} p(t)x$

_____ 20 points

In lecture we saw how to build trigram language models using *discounting meth-ods*, and the *Katz back-off* definition. We're now going to build a *four-gram* language model based on these ideas. A four-gram language model gives estimates

q(w|t, u, v)

where t, u, v, w is any sequence of four words.

Assume we have a corpus, and that c(t, u, v, w) is the number of times the four-gram t, u, v, w is seen in the data. Then take the following definitions:

$$\mathcal{A}(t, u, v) = \{w : c(t, u, v, w) > 0\}$$

and

$$\mathcal{B}(t, u, v) = \{w : c(t, u, v, w) = 0\}$$

Define $c^*(t, u, v, w)$ to be the discounted count for the four-gram (t, u, v, w), as follows:

$$c^{*}(t, u, v, w) = c(t, u, v, w) - 0.5$$

Assume that for any trigram $u, v, w, q_{BO}(w|u, v)$ is an estimate of the trigram probability, using the backed-off method described in lecture.

Finally, we define the four-gram model as

$$q_{BO}(w|t, u, v) = \begin{cases} \frac{c^*(t, u, v, w)}{c(t, u, v)} & \text{If } w \in \mathcal{A}(t, u, v) \\ \alpha(t, u, v) \times \frac{q_{BO}(w|u, v)}{\sum_{w \in \mathcal{B}(t, u, v)} q_{BO}(w|u, v)} & \text{If } w \in \mathcal{B}(t, u, v) \end{cases}$$

Question 4 (20 points) How would you define

 $\alpha(t, u, v)$

?