Quiz 1, COMS 4705

Name:

10

30

30

20

Good luck!

4705 Quiz 1

page 1 of 7

Part #1

(10 points)

Question 1 (10 points) We define a PCFG where non-terminal symbols are

{S, A, B}, the terminal symbols are {a,b}, and the start non-terminal (the non-
terminal always at the root of the tree) is S. The PCFG has the following
rules:

Rule Probability
S—S5S |03
S—AS |02
S— BB |05
A—a 0.2
A—b 0.8
B—a 0.4
B—b 0.6

For the input string abab, show two possible parse trees under this PCFG, and
show how to calculate their probability.

4705 Quiz 1 page 2 of 7

Input: a sentence z ...x,, parameters ¢(s|u,v) and e(x|s).
Initialization: Set 7(0,*,*) = 1, and 7 (0,u,v) = 0 for all (u,v) such that u # *
orv #*
Algorithm:
e Fork=1...n,
— ForueK,vek,

m(k,u,v) = max (m(k — 1,w,u) x q(vlw,u) X e(zk|v))

e Return max,ci vex (m(n, u,v) X ¢(STOP|u,v))

Figure 1: The Viterbi algorithm for trigram HMM taggers.

Part #2 30 points

Consider a trigram HMM, as introduced in class. We saw that the Viterbi
algorithm could be used to find

max p(Ti...Tn, Y1 Ynt1)
Y1---Yn+1

where the max is taken over all sequences i ...y,y1 such that y; € K for
i=1...n,and y,+1 = STOP. (Recall that IC is the set of possible tags in the
HMM.) In a trigram tagger we assume that p takes the form

n+1 n
p(T1. T, Y1 - Yg) = H q(Yilyi—2,yi-1) H€($i| Yi) (1)
i=1 i=1

Recall that we have assumed in this definition that yo = y_1 = *, and y,11 =
STOP. The Viterbi algorithm is shown in figure 1.

Now consider a bigram HMM tagger, where we instead have the following
definition:

n+1 n

Py wn,yn - ynsr) = [[a(ilvioo) [] e(il vi) (2)
i=1 1

1=

where yo = y_1 = *, and y,11 = STOP. The parameters of the bigram model
take the form ¢(s|v) and e(x|s). Note that we have replaced q(y;|yi—2,yi—1)
with ¢(y;|y:—1) in this definition, so intuitively each state only depends on the
previous state.

4705 Quiz 1 page 3 of 7

Question 2 (30 points) In the box below, give a version of the Viterbi

algorithm that finds

max p(Ti...Tn, Y1 Ynt1)
Y1---Yn+1
for a bigram HMM tagger, as defined in Eq. 2. You will get 30 points on the
question if you have a correct algorithm, which runs in O(n|K|?) time, where
n is the length of the sentence, and |K| is the number of tags. You will get a
maximum of 15 points on the question if you have a correct algorithm, but it
runs in slower than O(n|K|?) time.

Input: a sentence 7 ... x,, parameters ¢(s|v) and e(x|s).
Initialization:

Algorithm:

Return:

4705 Quiz 1 page 4 of 7

Part #3 30 points

Consider the CKY algorithm for finding the maximum probability for any tree
when given as input a sequence of words x1,xs2,...,Z,. As usual, we use N
to denote the set of non-terminals in the grammar, and S to denote the start
symbol.

The base case in the recursive definition is as follows: for all i = 1...n, for all
X eN,

. _ qX —z;) X >z, €R
(0,6, X) = { 0 otherwise

and the recursive definition is as follows: for all (¢,5) such that 1 < i < j < mn,
for all X € N,

(1,5, X)= max (¢(X —-YZ)xn(i,sY)xn(s+1,5,2))
XY ZER,
s€{in.(G—1)}

Finally, we return

1,n,8) = t
m(1,n,S) terr%gﬁ)p()

Now assume that we want to find the maximum probability for any left-branching
tree for a sentence. Here are some example left-branching trees:

B S S S
S PN
5% Ft G/\K A/\B
e £ D C a H A i & Tk b
e f 5 Y a i h L
i u D Y a
|
i u

4705 Quiz 1 page 5 of 7

It can be seen that in left-branching trees, whenever a rule of the form X -> Y Z
is seen in the tree, then the non-terminal Y must directly dominate a terminal
symbol.

Question 3 (30 points) Complete the recursive definition below, so that

the algorithm returns the maximum probability for any left-branching tree
underlying a sentence x1, X2, ..., Ty.

Base case: foralli=1...n, for all X € N,

(i i, X) = {q(X—’f”i) if X — @i € R

0 otherwise

Recursive case: (Complete below)

Return:

m(L,n,S) = teﬂ;gé)p(t)w

4705 Quiz 1 page 6 of 7

Part #4

20 points

In lecture we saw how to build trigram language models using discounting meth-
ods, and the Katz back-off definition. We’re now going to build a four-gram lan-
guage model based on these ideas. A four-gram language model gives estimates

q(w|t, u,v)
where ¢, u, v, w is any sequence of four words.

Assume we have a corpus, and that c(t,u,v,w) is the number of times the
four-gram ¢, u, v, w is seen in the data. Then take the following definitions:

A(t,u,v) = {w: e(t,u,v,w) > 0}
and
B(t,u,v) = {w: c(t,u,v,w) =0}

Define ¢* (¢, u, v, w) to be the discounted count for the four-gram (¢, u,v,w), as
follows:
c*(t,u,v,w) = c(t,u,v,w) — 0.5

Assume that for any trigram u,v,w, ¢ggo(w|u,v) is an estimate of the trigram
probability, using the backed-off method described in lecture.

Finally, we define the four-gram model as

% If we A(t, u,v)
qpo(wlt,u,v) = oft,u,v) x 5o (w|u,v) If w e B(t, u,v)
) Wy weE(t,u,’u)qBO(w‘um) >

Question 4 (20 points) How would you define

a(t,u,v)

4705 Quiz 1 page 7 of 7

