Questions for Flipped Classroom Session of COMS 4705
Week 9, Fall 2014. (Michael Collins)

Definition of $\text{consistent}(A,(s,t),(s',t'))$:
(Recall that A is an alignment matrix with $A_{i,j} = 1$ if French word i is aligned to English word j. (s,t) represents the sequence of French words $f_s ... f_t$. (s',t') represents the sequence of English words $e_{s'} ... e_{t'}$.)

For a given matrix A, define

$$A(i) = \{ j : A_{i,j} = 1 \}$$

Similarly, define

$$A'(j) = \{ i : A_{i,j} = 1 \}$$

Thus $A(i)$ is the set of English words that French word i is aligned to; $A'(j)$ is the set of French words that English word j is aligned to.

Then $\text{consistent}(A,(s,t),(s',t'))$ is true if and only if the following conditions are met:

1. For each $i \in \{s ... t\}$, $A(i) \subseteq \{s' ... t'\}$
2. For each $j \in \{s' ... t'\}$, $A'(j) \subseteq \{s ... t\}$
3. There is at least one (i,j) pair such that $i \in \{s ... t\}$, $j \in \{s' ... t'\}$, and $A_{i,j} = 1$

Figure 1: The definition of the consistent function.

Question 1a: Assume we have a training set with a single foreign sentence $f = \text{adog aswims}$ paired with the English sentence $e = \text{the dog swims}$. Assume we have alignments $A_{1,2} = A_{2,3} = 1$, with all other $A_{i,j}$ values equal to 0. List the full set of phrase pairs extracted from this example. (Recall that all phrase pairs are extracted which satisfy the consistent definition in Figure 1.)

Question 1b: Assume we have a training set consisting of a single pair of sentences f and e, together with an alignment matrix A. What values do f, e and A take to give the following phrase pairs as the full set of phrase pairs extracted?:

(adog, the dog)
(adog, dog)
(adog, dog swims)
(adog, the dog swims)

Question 1c: Now assume that we translate the sentence adog aswims into English using the set of phrase pairs from question 1a. Assume a distortion limit $d = 2$. One possible derivation for this sentence is

$$(1, 1, \text{the dog}) (2, 2, \text{swims})$$

Write down the full set of derivations for this foreign sentence.
Question 2 Recall that in phrase-based systems, a derivation \(y \) is a sequence of phrases \(p_1 \ldots p_L \) where each \(p_i \) is a triple \((s, t, e)\) and \(s \) is the start point of the phrase, \(t \) is the end point of the phrase, and \(e \) is a sequence of English words. A phrase represents the fact that words \(w_s \ldots w_t \) inclusive in the target language can be translated as the English sequence of words \(e \). The score for any derivation is calculated as follows:

\[
 f(y) = h(e(y)) + \sum_{k=1}^{L} g(p_k) + \sum_{k=1}^{L-1} \eta \times |t(p_k) + 1 - s(p_{k+1})|
\]

(1)

The components of this score are as follows:

- \(e(y) \) is the target-language string for derivation \(y \). \(h(e(y)) \) is the log-probability for the string \(e(y) \) under a trigram language model. Hence if \(e(y) = e_1 e_2 \ldots e_m \), then

\[
 h(e(y)) = \log \prod_{i=1}^{m} q(e_i | e_{i-2}, e_{i-1}) = \sum_{i=1}^{m} \log q(e_i | e_{i-2}, e_{i-1})
\]

- \(g(p_k) \) is the score for the phrase \(p_k \).

- \(\eta \) is a “distortion parameter” of the model.

Now consider the following derivations

\[
y_1 = (1, 3, \text{ we must also}), (7, 7, \text{ take}), (4, 5, \text{ this criticism}), (6, 6, \text{ seriously})
\]

\[
y_2 = (1, 3, \text{ we must also}), (4, 5, \text{ this criticism}), (6, 6, \text{ seriously}), (7, 7, \text{ take})
\]

Question: What is the value for \(f(y_1) - f(y_2) \)? (Express this in terms of the \(q \), \(g \) and \(\eta \) parameters.)
Question 3 Consider translating the foreign string *acat abarks* with a phrase-based model with the following lexicon:

(achat, cat)
(achat, the cat)
(abarks, barks)
(achat abarks, cat barks)
(achat abarks, the cat barks)

Question: Assume as usual that the initial state is $q_0 = (\ast, \ast, 00, 0, 0)$. Recall that each state is of the form (e_1, e_2, b, r, α) where e_1 and e_2 are the last two words of the partial translation, b is a bit string recording which words have been translated, r is the end point of the most recent phrase, and α is the score of the partial translation. Assume that we use beam search to find the highest scoring derivation, with the distortion limit $d = \infty$, and a beam size that is also infinite. What is the full set of states in Q_1 and Q_2 when the algorithm terminates? (Recall that Q_i for $i \in \{1 \ldots n\}$ where n is the length of the source sentence contains the full set of states with exactly i words in the source language translated.) You do not need to specify the values for the score α for each state.

Hint: the full set of phrases for the input sentence *acat abarks* is

(1, 1, cat)
(1, 1, the cat)
(2, 2, barks)
(1, 2, cat barks)
(1, 2, the cat barks)