Question 1

Question 2

Question 2 (continued)

Question 3 (Part 1)

One grammar (there are many possibilities) is as follows:
S (the) $\rightarrow \mathrm{NP}($ the $) \mathrm{VP}($ saw $)$
VP(saw) \rightarrow VB(saw) NP(the)
$N P($ the $) \rightarrow$ DT(the) $N N$ (man)
NP (the) $\rightarrow \mathrm{NP}$ (the) PP (with)
$\mathrm{PP}($ with $) \rightarrow \mathrm{IN}($ with $) \mathrm{NP}$ (the)
DT(the) \rightarrow the
$\mathrm{NN}($ man $) \rightarrow$ man
IN (with) \rightarrow with
$\mathrm{VB}($ saw $) \rightarrow$ saw

Question 3 (Part 1)

Question 3 (Part 2)

- Base case definition: for all $i=1 \ldots n$, for $X \in N$

$$
\pi[i, i, X]=q\left(X\left(w_{i}\right) \rightarrow w_{i}\right)
$$

(note: define $q\left(X\left(w_{i}\right) \rightarrow w_{i}\right)=0$ if $X\left(w_{i}\right) \rightarrow w_{i}$ is not in the grammar)

- Recursive definition: for all $i=1 \ldots n, j=(i+1) \ldots n$, $X \in N$,

$$
\begin{gathered}
\pi(i, j, X)= \\
\max _{\substack{s \in\{i, \ldots j-1)\}, X\left(w_{i}\right) \rightarrow Y\left(w_{i}\right) Z\left(w_{s+1}\right) \in R}}\left(q\left(X\left(w_{i}\right) \rightarrow Y\left(w_{i}\right) Z\left(w_{s+1}\right)\right) \times \pi(i, s, Y) \times \pi(s+1, j, Z)\right)
\end{gathered}
$$

Question 4

```
\gamma(S,a)=q(a|*)
\gamma(S,b)=q(b)*)
S(a) }\mp@subsup{->}{1}{}\textrm{A}(\textrm{a})\textrm{C}(STOP
S(a) }\mp@subsup{->}{1}{}A(a)S(a
S(a) }\mp@subsup{->}{1}{}A(a)S(b
S(b) }\mp@subsup{->}{1}{}\textrm{B}(\textrm{b})\textrm{C}(STOP
S(b) ->1 B(b)S(a)
S(b) }\mp@subsup{->}{1}{}\textrm{B}(\textrm{b})\textrm{S}(\textrm{b}
A(a)}->\textrm{a
B(b) }->\mathrm{ b
C(STOP) }->\mathrm{ STOP
```

q(STOP|a)

```
q(STOP|a)
q(a|a)
q(a|a)
q(b|a)
q(b|a)
q(STOP|b)
q(STOP|b)
q(a|b)
q(a|b)
q(b|b)
q(b|b)
1
1
1
1
1
```

```
1
```

```
```

