Question 1 Consider the following parse tree:

Now assume that we add head-words to the non-terminals in the parse tree. We do this by specifying the following rules for finding the heads of context-free rules (note that these rules don’t necessarily make sense from a linguistic standpoint):

- For the rule \(S \rightarrow NP\ VP \), the \(VP \) is the head of the rule.
- For the rule \(NP \rightarrow D\ N \), the \(N \) is the head of the rule.
- For the rule \(PP \rightarrow P\ NP \), the \(NP \) is the head of the rule.
- For the rule \(VP \rightarrow V\ NP\ PP \), the \(NP \) is the head of the rule.
- As is usual with head-finding rules, for any rule of the form \(X \rightarrow w \) where \(X \) is a non-terminal, and \(w \) is a word, we take \(w \) to be the head of the rule (and \(X \) then has \(w \) as its head-word).

Question: Draw a new version of the parse tree, where head-words have been added to the non-terminals in the tree using the rules we have specified.
Question 2 Consider the following lexicalized grammar:

\[
\begin{align*}
S(\text{likes}) \rightarrow & \ 2 \ NP(\text{Bob}) \ VP(\text{likes}) \\
VP(\text{likes}) \rightarrow & \ 1 \ VB(\text{likes}) \ NP(\text{parks}) \\
NP(\text{parks}) \rightarrow & \ 1 \ NP(\text{parks}) \ PP(\text{in}) \\
NP(\text{parks}) \rightarrow & \ 1 \ NP(\text{parks}) \ NP-CC(\text{London}) \\
NP(\text{Paris}) \rightarrow & \ 1 \ NP(\text{Paris}) \ NP-CC(\text{London}) \\
PP(\text{in}) \rightarrow & \ 1 \ IN(\text{in}) \ NP(\text{Paris}) \\
NP-CC(\text{London}) \rightarrow & \ 2 \ CC(\text{and}) \ NP(\text{London}) \\
NP(\text{Bob}) \rightarrow & \ Bob \\
NP(\text{parks}) \rightarrow & \ parks \\
NP(\text{London}) \rightarrow & \ London \\
NP(\text{Paris}) \rightarrow & \ Paris \\
VB(\text{likes}) \rightarrow & \ likes
\end{align*}
\]

Show all parse trees under this grammar for the sentence

Bob likes parks in Paris and London

If we add probabilities to the above rules, how will this model perform compare to a conventional PCFG with rules \(S \rightarrow NP \ VP \), \(NP \rightarrow NP \ PP \) etc.?
Question 3 We define the following type of “lexicalized” grammar:

- \(N \) is a set of non-terminal symbols
- \(\Sigma \) is a set of terminal symbols
- \(R \) is a set of rules which take one of two forms:
 - \(X(h) \rightarrow Y_1(h) Y_2(w) \) for \(X \in N \), and \(Y_1, Y_2 \in N \), and \(h, w \in \Sigma \)
 - \(X(h) \rightarrow h \) for \(X \in N \), and \(h \in \Sigma \)
- \(S \in N \) is a distinguished start symbol

Note that this is similar to the “lexicalized Chomsky normal form” grammar we introduced in lecture, except that we do not allow rules of the following form:

\[X(h) \rightarrow Y_1(w) Y_2(h) \] for \(X \in N \), and \(Y_1, Y_2 \in N \), and \(h, w \in \Sigma \).

Question: Define a grammar in the above form that gives at least one valid parse tree for the sentence *the man saw the man with the man*. Draw a parse tree under your grammar for this sentence. Make sure to show the head words in your parse tree.

Question: Now assume we have a probabilistic lexicalized context-free grammar with rules that take the above form. Give pseudo-code for an efficient dynamic programming algorithm that returns the highest probability parse tree for a given input sentence \(w_1, w_2, \ldots, w_n \). Your algorithm should run in at most \(O(n^3 |N|^3) \) time where \(n \) is the length of the sentence, and \(|N| \) is the number of non-terminals in the grammar.
Question 4 Consider a language model with a vocabulary $V = \{a, b\}$ and the following parameters:

\[
\begin{align*}
q(a|\ast) &= 0.3 \\
q(b|\ast) &= 0.7 \\
q(a|a) &= 0.2 \\
q(b|a) &= 0.7 \\
q(STOP|a) &= 0.1 \\
q(a|b) &= 0.8 \\
q(b|b) &= 0.1 \\
q(STOP|b) &= 0.1
\end{align*}
\]

Now write down a lexicalized PCFG with the same distribution over sentences as this grammar (write down both the rules in the lexicalized PCFG, and their probabilities). For any string s, if $T(s)$ is the set of possible parse trees for s, and $p(t)$ is the probability for any tree, then the probability distribution over strings is

\[
p(s) = \sum_{t \in T(s)} p(t)
\]

Note that you can assume that the strings s always end in the STOP symbol, so for example the string

\[
a \ b \ STOP
\]

should have probability

\[
q(a|\ast) \times q(b|a) \times q(STOP|b)
\]

under the lexicalized PCFG.