Questions for Flipped Classroom Session of COMS 4705 Week 5, Fall 2014. (Michael Collins)

Question 1 In this question our goal is to design an algorithm that takes a sentence s and a context-free grammar in Chomsky normal form as input, and as its output returns the number of parse trees for the sentence s as its output.

For example, if s is the sentence a a and the context-free grammar is
$\mathrm{X} \rightarrow \mathrm{XX}$
$\mathrm{X} \rightarrow \mathrm{a}$
with start symbol X, the algorithm should return the value 2 , because there are two parses for the sentence under this grammar:

Question: Complete the following algorithm so that it returns the number of possible parse trees for the input sentence s.

Input: a sentence $s=x_{1} \ldots x_{n}$, a context-free grammar $G=(N, \Sigma, S, R)$. Initialization:
For all $i \in\{1 \ldots n\}$, for all $X \in N$,

$$
\pi(i, i, X)= \begin{cases}1 & \text { if } X \rightarrow x_{i} \in R \\ 0 & \text { otherwise }\end{cases}
$$

Algorithm:

- For $l=1 \ldots(n-1)$
- For $i=1 \ldots(n-l)$
* $\operatorname{Set} j=i+l$
* For all $X \in N$, calculate

$$
\pi(i, j, X)=\sum_{\substack{X \rightarrow Y Z \in R, s \in\{i \ldots(j-1)\}}} \underbrace{}_{\text {COMPLETE THE DEFINITION HERE }}
$$

Output: Return $\pi(1, n, S)$

Question 2 Consider the CKY algorithm for finding the maximum probability for any tree when given as input a sequence of words $x_{1}, x_{2}, \ldots, x_{n}$. As usual, we use N to denote the set of non-terminals in the grammar, and S to denote the start symbol.

The base case in the recursive definition is as follows: for all $i=1 \ldots n$, for all $X \in N$,

$$
\pi(i, i, X)= \begin{cases}q\left(X \rightarrow x_{i}\right) & \text { if } X \rightarrow x_{i} \in R \\ 0 & \text { otherwise }\end{cases}
$$

and the recursive definition is as follows: for all (i, j) such that $1 \leq i<j \leq n$, for all $X \in N$,

$$
\pi(i, j, X)=\max _{\substack{X \rightarrow Y Z \in R \\ s \in\{i \ldots(j-1)\}}}(q(X \rightarrow Y Z) \times \pi(i, s, Y) \times \pi(s+1, j, Z))
$$

Finally, we return

$$
\pi(1, n, S)=\max _{t \in \mathcal{T}_{G}(s)} p(t)
$$

Now assume that we want to find the maximum probability for any left-branching tree for a sentence. Here are some example left-branching trees:

(Question continued on next page)

It can be seen that in left-branching trees, whenever a rule of the form $\mathrm{X} \rightarrow \mathrm{Y} \mathrm{Z}$ is seen in the tree, then the non-terminal z must directly dominate a terminal symbol.

Question: Complete the recursive definition below, so that the algorithm returns the maximum probability for any left-branching tree underlying a sentence $x_{1}, x_{2}, \ldots, x_{n}$.

Base case: for all $i=1 \ldots n$, for all $X \in N$,

$$
\pi(i, i, X)= \begin{cases}q\left(X \rightarrow x_{i}\right) & \text { if } X \rightarrow x_{i} \in R \\ 0 & \text { otherwise }\end{cases}
$$

Recursive case: (Complete below)

Return:

$$
\pi(1, n, S)=\max _{t \in \mathcal{T}_{G}(s)} p(t)
$$

Question 3 Consider the following PCFG (probabilities for each rule are shown after the rule):

$\mathrm{S} \rightarrow$ NP VP	1.0
$\mathrm{NP} \rightarrow$ DT NBAR	1.0
NBAR \rightarrow NN	0.7
NBAR \rightarrow NBAR NBAR	0.3
$\mathrm{VP} \rightarrow$ sleeps	1.0
$\mathrm{DT} \rightarrow$ the	1.0
NN \rightarrow mechanic	0.1
NN \rightarrow car	0.2
NN \rightarrow metal	0.7

Now consider a PCFG based on this context-free grammar. What parse tree will be returned as the highest probability tree for the metal car mechanic sleeps?

Question 4 Consider the following HMM:

- States in the HMM are $\{A, B\}$.
- q parameters of the HMM are $q(y \mid x)$ for $x \in\{\mathrm{~A}, \mathrm{~B}, *\}$ and $y \in\{\mathrm{~A}, \mathrm{~B}, \mathrm{STOP}\}$.
- Vocabulary in the HMM is $\{\mathrm{s}, \mathrm{t}\}$.
- e parameters in the HMM of the form $e(y \mid x)$ for $x \in\{\mathrm{~A}, \mathrm{~B}, *\}$ and $y \in$ $\{\mathrm{s}, \mathrm{t}\}$.

Our aim is this question is to write down a PCFG such that for any sentence $x_{1} \ldots x_{n}$ and tag sequence $y_{1} \ldots y_{n+1}$ with probability

$$
p=p\left(x_{1} \ldots x_{n}, y_{1} \ldots y_{n+1}\right)
$$

under the HMM, there is a parse tree for the sentence $x_{1} \ldots x_{n}$ with the same probability p under the PCFG.

Complete the probabilities for the following rules in the PCFG (hint: try writing down parse trees for simple sentence/tag sequences such as $s / A, s / A t / B$ etc.):

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{~A} \mathrm{FA} \\
& \mathrm{~S} \rightarrow \mathrm{~B} \mathrm{FB} \\
& \mathrm{~S} \rightarrow \mathrm{~A} \\
& \mathrm{~S} \rightarrow \mathrm{~B} \\
& \mathrm{FA} \rightarrow \mathrm{~A} \mathrm{FA} \\
& \mathrm{FA} \rightarrow \mathrm{~A} \\
& \mathrm{FA} \rightarrow \mathrm{~B} \mathrm{FB} \\
& \mathrm{FA} \rightarrow \mathrm{~B} \\
& \mathrm{FB} \rightarrow \mathrm{~A} \mathrm{FA} \\
& \mathrm{FB} \rightarrow \mathrm{~A} \\
& \mathrm{FB} \rightarrow \mathrm{~B} \mathrm{FB} \\
& \mathrm{FB} \rightarrow \mathrm{~B} \\
& \mathrm{~A} \rightarrow \mathrm{~s} \\
& \mathrm{~A} \rightarrow \mathrm{t} \\
& \mathrm{~B} \rightarrow \mathrm{~s} \\
& \mathrm{~B} \rightarrow \mathrm{t}
\end{aligned}
$$

