Questions for Flipped Classroom Session of COMS 4705 Week 5, Fall 2014. (Michael Collins)

Question 1 In this question our goal is to design an algorithm that takes a sentence *s* and a context-free grammar in Chomsky normal form as input, and as its output returns *the number of parse trees for the sentence s* as its output.

For example, if s is the sentence a a, and the context-free grammar is

 $\begin{array}{l} X \rightarrow X \; X \\ X \rightarrow a \end{array}$

with start symbol X, the algorithm should return the value 2, because there are two parses for the sentence under this grammar:

Question: Complete the following algorithm so that it returns the number of possible parse trees for the input sentence *s*.

Question 2 Consider the CKY algorithm for finding the maximum probability for any tree when given as input a sequence of words x_1, x_2, \ldots, x_n . As usual, we use N to denote the set of non-terminals in the grammar, and S to denote the start symbol.

The base case in the recursive definition is as follows: for all $i = 1 \dots n$, for all $X \in N$,

$$\pi(i, i, X) = \begin{cases} q(X \to x_i) & \text{if } X \to x_i \in R \\ 0 & \text{otherwise} \end{cases}$$

and the recursive definition is as follows: for all (i, j) such that $1 \le i < j \le n$, for all $X \in N$,

$$\pi(i,j,X) = \max_{\substack{X \to YZ \in R, \\ s \in \{i...(j-1)\}}} \left(q(X \to YZ) \times \pi(i,s,Y) \times \pi(s+1,j,Z) \right)$$

Finally, we return

$$\pi(1, n, S) = \max_{t \in \mathcal{T}_G(s)} p(t)$$

Now assume that we want to find the maximum probability for any *left-branching* tree for a sentence. Here are some example left-branching trees:

(Question continued on next page)

It can be seen that in left-branching trees, whenever a rule of the form $X \rightarrow Z$ is seen in the tree, then the non-terminal Z must directly dominate a terminal symbol.

Question: Complete the recursive definition below, so that the algorithm returns the maximum probability for any **left-branching** tree underlying a sentence x_1, x_2, \ldots, x_n .

Base case: for all i = 1 ... n, for all $X \in N$, $\pi(i, i, X) = \begin{cases} q(X \to x_i) & \text{if } X \to x_i \in R \\ 0 & \text{otherwise} \end{cases}$

Recursive case: (Complete below)

Return:

$$\pi(1, n, S) = \max_{t \in \mathcal{T}_G(s)} p(t)$$

Question 3 Consider the following PCFG (probabilities for each rule are shown after the rule):

$\mathrm{S} ightarrow \mathrm{NP} \mathrm{VP}$	1.0
$NP \rightarrow DT NBAR$	1.0
$NBAR \rightarrow NN$	0.7
$NBAR \rightarrow NBAR NBAR$	0.3
$VP \rightarrow sleeps$	1.0
$\text{DT} \rightarrow \text{the}$	1.0
$NN \rightarrow$ mechanic	0.1
$NN \rightarrow car$	0.2
$NN \rightarrow metal$	0.7

Now consider a PCFG based on this context-free grammar. What parse tree will be returned as the highest probability tree for *the metal car mechanic sleeps*?

Question 4 Consider the following HMM:

- States in the HMM are $\{A, B\}$.
- q parameters of the HMM are q(y|x) for $x \in \{A, B, *\}$ and $y \in \{A, B, STOP\}$.
- Vocabulary in the HMM is {s, t}.
- e parameters in the HMM of the form e(y|x) for $x \in \{A, B, *\}$ and $y \in \{s, t\}$.

Our aim is this question is to write down a PCFG such that for any sentence $x_1 \dots x_n$ and tag sequence $y_1 \dots y_{n+1}$ with probability

$$p = p(x_1 \dots x_n, y_1 \dots y_{n+1})$$

under the HMM, there is a parse tree for the sentence $x_1 \dots x_n$ with the same probability p under the PCFG.

Complete the probabilities for the following rules in the PCFG (hint: try writing down parse trees for simple sentence/tag sequences such as s/A, s/A t/B etc.):

 $S \rightarrow A FA$ $S \rightarrow \ B \ FB$ $S \to \ A$ $S \rightarrow \ B$ $FA \rightarrow AFA$ $FA \rightarrow A$ $FA \rightarrow B FB$ $FA \rightarrow B$ $FB \rightarrow AFA$ $FB \rightarrow A$ $FB \rightarrow \ B \ FB$ $FB \rightarrow \ B$ $A \rightarrow \ s$ $A \to \ t$ $B \rightarrow \ s$ $B \to \ t$