## Question 1a

One parse tree:


## Question 1b

Two parse trees, parse tree 1 :


## Question 1b

Two parse trees, parse tree 2 :


## Question 1c

$k$ prepositions after the verb leads to an NP after the verb that is equivalent to a binary branching tree with $k+1$ leaves. So we have $C_{k}$ parse trees.

## Question 2

Add the singular/plural distinction to the grammar:
$\mathrm{S} \rightarrow$ NP-s VP-s
$\mathrm{S} \rightarrow$ NP-p VP-p
NP-s $\rightarrow$ DT NN
NP-p $\rightarrow$ DT NNS
NP-p $\rightarrow$ NP-p PP
NP-s $\rightarrow$ NP-s PP
PP $\rightarrow$ IN NP-s
PP $\rightarrow$ IN NP-p
VP-s $\rightarrow$ VB-s NP-s
VP-s $\rightarrow$ VB-s NP-p
VP-p $\rightarrow$ VB-p NP-s
VP-p $\rightarrow$ VB-p NP-p
VP-s $\rightarrow$ VP-s PP
VP-p $\rightarrow$ VP-p PP
DT $\rightarrow$ the
NN $\rightarrow$ man
NN $\rightarrow$ dog
$\mathrm{NN} \rightarrow$ cat
NN $\rightarrow$ park
NNS $\rightarrow$ dogs
NNS $\rightarrow$ cats
NNS $\rightarrow$ parks
VB-p $\rightarrow$ see
VB-s $\rightarrow$ sees
IN $\rightarrow$ in
IN $\rightarrow$ with
IN $\rightarrow$ under

## Question 3

$$
q\left(\left.\mathrm{DT} 1\right|^{*}\right)=q(\mathrm{NN} 1 \mid \mathrm{DT} 1)=q(\mathrm{VB} \mid \mathrm{NN} 1)=q(\mathrm{DT} 2 \mid \mathrm{VB})=q(\mathrm{NN} 2 \mid \mathrm{DT} 2)=1
$$

$$
q(\mathrm{STOP} \mid \mathrm{NN} 2)=q(\mathrm{IN} \mid \mathrm{NN} 2)=0.5
$$

$$
q(\mathrm{DT} 2 \mid \mathrm{IN})=1
$$

$$
\begin{gathered}
e(\text { the } \mid \mathrm{DT} 1)=e(\text { the } \mid \mathrm{DT} 2)=1 \\
e(\text { man } \mid \mathrm{NN} 1)=e(\text { man } \mid \mathrm{NN} 2)=e(\operatorname{dog} \mid \mathrm{NN} 1)=e(\operatorname{dog} \mid \mathrm{NN} 2)=1 / 3 \\
e(\text { telescope } \mid \mathrm{NN} 1)=e(\text { telescope } \mid \mathbf{N N} 2)=1 / 3 \\
e(\text { saw } \mid \mathbf{V B})=1 \\
e(\text { with } \mid \mathbf{N})=e(\text { under } \mid \mathbf{I N})=0.5
\end{gathered}
$$

## Question 4a



## Question 4a



## Question 4b



## Question 4c

Add the rule
VP-GAP $\rightarrow$ V3 S-GAP

