Questions for Flipped Classroom Session of COMS 4705
Week 3, Fall 2014. (Michael Collins)

Question 1 Consider a trigram HMM tagger with:

- The set \mathcal{K} of possible tags equal to \{D, N, V\}
- The set \mathcal{V} of possible words equal to \{the, dog, barks\}
- The following parameters:

\[
\begin{align*}
q(D|*, *) &= 1 \\
q(N|*, D) &= 1 \\
q(V|D, N) &= 1 \\
q(\text{STOP}|N, V) &= 1 \\
e(\text{the}|D) &= 1 \\
e(\text{dog}|N) &= 0.4 \\
e(\text{barks}|N) &= 0.6 \\
e(\text{dog}|V) &= 0.1 \\
e(\text{barks}|V) &= 0.9
\end{align*}
\]

with all other parameter values equal to 0.

Question: Write down the set of all pairs of sequences $x_1 \ldots x_n, y_1 \ldots y_{n+1}$ such that the following properties hold:

- $p(x_1 \ldots x_n, y_1 \ldots y_{n+1}) > 0$
- $x_i \in \mathcal{V}$ for all $i \in 1 \ldots n$
- $y_i \in \mathcal{K}$ for all $i \in 1 \ldots n$, and $y_{n+1} = \text{STOP}$
Input: a sentence $x_1 \ldots x_n$, parameters $q(s|u, v)$ and $e(x|s)$.

Definitions: Define \mathcal{K} to be the set of possible tags. Define $\mathcal{K}_{-1} = \mathcal{K}_0 = \{^*\}$, and $\mathcal{K}_k = \mathcal{K}$ for $k = 1 \ldots n$.

Initialization: Set $\pi(0, ^*, ^*) = 1$.

Algorithm:

- For $k = 1 \ldots n$,
 - For $u \in \mathcal{K}_{k-1}$, $v \in \mathcal{K}_k$,
 $$\pi(k, u, v) = \max_{w \in \mathcal{K}_{k-2}} (\pi(k-1, w, u) \times q(v|w, u) \times e(x_k|v))$$
- Return $\max_{u \in \mathcal{K}_{n-1}, v \in \mathcal{K}_n} (\pi(n, u, v) \times q(\text{STOP}|u, v))$

Figure 1: The basic Viterbi Algorithm.

Question 2 Consider a trigram HMM, as introduced in class. We saw that the Viterbi algorithm could be used to find

$$\max_{y_1 \ldots y_{n+1}} p(x_1 \ldots x_n, y_1 \ldots y_{n+1})$$

where the max is taken over all sequences $y_1 \ldots y_{n+1}$ such that $y_i \in \mathcal{K}$ for $i = 1 \ldots n$, and $y_{n+1} = \text{STOP}$. (Recall that \mathcal{K} is the set of possible tags in the HMM.)

In a trigram tagger we assume that p takes the form

$$p(x_1 \ldots x_n, y_1 \ldots y_{n+1}) = \prod_{i=1}^{n+1} q(y_i|y_{i-2}, y_{i-1}) \prod_{i=1}^n e(x_i|y_i) \tag{1}$$

Recall that we have assumed in this definition that $y_0 = y_{-1} = ^*$, and $y_{n+1} = \text{STOP}$. The Viterbi algorithm is shown in figure 1.

Now consider a four-gram tagger, where p takes the form

$$p(x_1 \ldots x_n, y_1 \ldots y_{n+1}) = \prod_{i=1}^{n+1} q(y_i|y_{i-3}, y_{i-2}, y_{i-1}) \prod_{i=1}^n e(x_i|y_i) \tag{2}$$

We have assumed in this definition that $y_0 = y_{-1} = y_{-2} = ^*$, and $y_{n+1} = \text{STOP}$.
Question: In the box below, give a version of the Viterbi algorithm that takes as input a sentence $x_1 \ldots x_n$, and finds

$$\max_{y_1 \ldots y_{n+1}} p(x_1 \ldots x_n, y_1 \ldots y_{n+1})$$

for a four-gram tagger, as defined in Eq. 4.

| Input: | a sentence $x_1 \ldots x_n$, parameters $q(w|t, u, v)$ and $e(x|s)$. |
|---|---|
| Definitions: | Define \mathcal{K} to be the set of possible tags. Define $\mathcal{K}_{-2} = \mathcal{K}_{-1} = \mathcal{K}_0 = \{^*\}$, and $\mathcal{K}_k = \mathcal{K}$ for $k = 1 \ldots n$. |
| Initialization: | |
| Algorithm: | |
| Return: | |
Question: In the box below, give a version of the Viterbi algorithm that takes as input an integer n, and finds

$$\max_{y_1 \ldots y_{n+1}, x_1 \ldots x_n} p(x_1 \ldots x_n, y_1 \ldots y_{n+1})$$

for a trigram tagger, as defined in Eq. 3. **Hence the input to the algorithm is an integer n, and the output from the algorithm is the highest scoring pair of sequences $x_1 \ldots x_n, y_1 \ldots y_{n+1}$ under the model.**

Input: an integer n, parameters $q(w|u, v)$ and $e(x|s)$.

Definitions: Define \mathcal{K} to be the set of possible tags. Define $\mathcal{K}_{-1} = \mathcal{K}_0 = \{\ast\}$, and $\mathcal{K}_k = \mathcal{K}$ for $k = 1 \ldots n$. Define \mathcal{V} to be the set of possible words.

Initialization:

Algorithm:

Return:
Question 3 Consider a trigram HMM, as introduced in class. We saw that the Viterbi algorithm could be used to find

$$\max_{y_1 \ldots y_{n+1}} p(x_1 \ldots x_n, y_1 \ldots y_{n+1})$$

where the max is taken over all sequences $y_1 \ldots y_{n+1}$ such that $y_i \in K$ for $i = 1 \ldots n$, and $y_{n+1} = \text{STOP}$. (Recall that K is the set of possible tags in the HMM.)

In a trigram tagger we assume that p takes the form

$$p(x_1 \ldots x_n, y_1 \ldots y_{n+1}) = \prod_{i=1}^{n+1} q(y_i | y_{i-2}, y_{i-1}) \prod_{i=1}^n e(x_i | y_i)$$ \hspace{1cm} (3)$$

Recall that we have assumed in this definition that $y_0 = y_{-1} = *$, and $y_{n+1} = \text{STOP}$. The Viterbi algorithm is shown in figure 1.

Now consider a “skip” tagger, where p takes the form

$$p(x_1 \ldots x_n, y_1 \ldots y_{n+1}) = \prod_{i=1}^{n+1} q(y_i | y_{i-2}) \prod_{i=1}^n e(x_i | y_i)$$ \hspace{1cm} (4)$$

We have assumed in this definition that $y_0 = y_{-1} = *$, and $y_{n+1} = \text{STOP}$. Note that a “skip” tagger replaces the term $q(y_i | y_{i-2}, y_{i-1})$ in a regular trigram tagger with

$$q(y_i | y_{i-2})$$

We call it a skip tagger because y_{i-1} is now omitted from the conditioning information.
Question: In the box below, give a version of the Viterbi algorithm that takes as input a sentence $x_1 \ldots x_n$, and finds

$$\max_{y_1 \ldots y_{n+1}} p(x_1 \ldots x_n, y_1 \ldots y_{n+1})$$

for a skip tagger, as defined in Eq. 4. (Note: it is fine if the runtime of your algorithm is $O(n|\mathcal{K}|^3)$.)

Input: a sentence $x_1 \ldots x_n$, parameters $q(w|v)$ and $e(x|s)$.

Definitions: Define \mathcal{K} to be the set of possible tags. Define $\mathcal{K}_{-1} = \mathcal{K}_0 = \{\ast\}$, and $\mathcal{K}_k = \mathcal{K}$ for $k = 1 \ldots n$.

Initialization:

Algorithm:

Return:
Question 4 Say we have a training set consisting of two tagged sentences:

the/DT can/NN is/VB in/IN the/DT shed/NN

the/DT dog/NN can/VB see/VB the/DT cat/NN

We train a bigram tagger of the form

\[p(x_1 \ldots x_n, y_1 \ldots y_{n+1}) = \prod_{i=1}^{n+1} q(y_i | y_{i-1}) \prod_{i=1}^{n} e(x_i | y_i) \]

using simple maximum-likelihood estimates for the \(q \) and \(e \) parameters.

If we then use the Viterbi algorithm to find the maximum probability tag sequence for each of the training sentences, show that the tagger tags both sentences correctly.

Question 5 Now come up with a training set such that when we train a bigram tagger using maximum likelihood estimates, the resulting model makes at least one mistake on the training set.