
Questions for Flipped Classroom Session of COMS 4705
Week 3, Fall 2014. (Michael Collins)

Question 1 Consider a trigram HMM tagger with:

• The set K of possible tags equal to {D, N, V}

• The set V of possible words equal to {the, dog, barks}

• The following parameters:

q(D|*, *) = 1

q(N|*, D) = 1

q(V|D, N) = 1

q(STOP|N, V) = 1

e(the|D) = 1

e(dog|N) = 0.4

e(barks|N) = 0.6

e(dog|V) = 0.1

e(barks|V) = 0.9

with all other parameter values equal to 0.

Question: Write down the set of all pairs of sequences x1 . . . xn, y1 . . . yn+1 such
that the following properties hold:

• p(x1 . . . xn, y1 . . . yn+1) > 0

• xi ∈ V for all i ∈ 1 . . . n

• yi ∈ K for all i ∈ 1 . . . n, and yn+1 = STOP
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Input: a sentence x1 . . . xn, parameters q(s|u, v) and e(x|s).
Definitions: Define K to be the set of possible tags. Define K−1 = K0 = {*}, and
Kk = K for k = 1 . . . n.
Initialization: Set π(0, *, *) = 1.
Algorithm:

• For k = 1 . . . n,

– For u ∈ Kk−1, v ∈ Kk,

π(k, u, v) = max
w∈Kk−2

(π(k − 1, w, u)× q(v|w, u)× e(xk|v))

• Return maxu∈Kn−1,v∈Kn (π(n, u, v)× q(STOP|u, v))

Figure 1: The basic Viterbi Algorithm.

Question 2 Consider a trigram HMM, as introduced in class. We saw that the
Viterbi algorithm could be used to find

max
y1...yn+1

p(x1 . . . xn, y1 . . . yn+1)

where the max is taken over all sequences y1 . . . yn+1 such that yi ∈ K for i =
1 . . . n, and yn+1 = STOP. (Recall that K is the set of possible tags in the HMM.)
In a trigram tagger we assume that p takes the form

p(x1 . . . xn, y1 . . . yn+1) =
n+1∏
i=1

q(yi|yi−2, yi−1)
n∏

i=1

e(xi| yi) (1)

Recall that we have assumed in this definition that y0 = y−1 = *, and yn+1 =
STOP. The Viterbi algorithm is shown in figure 1.

Now consider a four-gram tagger, where p takes the form

p(x1 . . . xn, y1 . . . yn+1) =
n+1∏
i=1

q(yi|yi−3, yi−2, yi−1)
n∏

i=1

e(xi|yi) (2)

We have assumed in this definition that y0 = y−1 = y−2 = *, and yn+1 = STOP.
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Question: In the box below, give a version of the Viterbi algorithm that takes as
input a sentence x1 . . . xn, and finds

max
y1...yn+1

p(x1 . . . xn, y1 . . . yn+1)

for a four-gram tagger, as defined in Eq. 4.

Input: a sentence x1 . . . xn, parameters q(w|t, u, v) and e(x|s).
Definitions: Define K to be the set of possible tags. Define K−2 = K−1 = K0 =
{*}, and Kk = K for k = 1 . . . n.
Initialization:

Algorithm:

Return:
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Question: In the box below, give a version of the Viterbi algorithm that takes as
input an integer n, and finds

max
y1...yn+1,x1...xn

p(x1 . . . xn, y1 . . . yn+1)

for a trigram tagger, as defined in Eq. 3. Hence the input to the algorithm is
an integer n, and the output from the algorithm is the highest scoring pair of
sequences x1 . . . xn, y1 . . . yn+1 under the model.

Input: an integer n, parameters q(w|u, v) and e(x|s).
Definitions: Define K to be the set of possible tags. Define K−1 = K0 = {*}, and
Kk = K for k = 1 . . . n. Define V to be the set of possible words.
Initialization:

Algorithm:

Return:
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Question 3 Consider a trigram HMM, as introduced in class. We saw that the
Viterbi algorithm could be used to find

max
y1...yn+1

p(x1 . . . xn, y1 . . . yn+1)

where the max is taken over all sequences y1 . . . yn+1 such that yi ∈ K for i =
1 . . . n, and yn+1 = STOP. (Recall that K is the set of possible tags in the HMM.)
In a trigram tagger we assume that p takes the form

p(x1 . . . xn, y1 . . . yn+1) =
n+1∏
i=1

q(yi|yi−2, yi−1)
n∏

i=1

e(xi| yi) (3)

Recall that we have assumed in this definition that y0 = y−1 = *, and yn+1 =
STOP. The Viterbi algorithm is shown in figure 1.

Now consider a “skip” tagger, where p takes the form

p(x1 . . . xn, y1 . . . yn+1) =
n+1∏
i=1

q(yi|yi−2)
n∏

i=1

e(xi|yi) (4)

We have assumed in this definition that y0 = y−1 = *, and yn+1 = STOP. Note
that a “skip” tagger replaces the term q(yi|yi−2, yi−1) in a regular trigram tagger
with

q(yi|yi−2)

We call it a skip tagger because yi−1 is now omitted from the conditioning infor-
mation.
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Question: In the box below, give a version of the Viterbi algorithm that takes as
input a sentence x1 . . . xn, and finds

max
y1...yn+1

p(x1 . . . xn, y1 . . . yn+1)

for a skip tagger, as defined in Eq. 4. (Note: it is fine if the runtime of your
algorithm is O(n|K|3).)

Input: a sentence x1 . . . xn, parameters q(w|v) and e(x|s).
Definitions: Define K to be the set of possible tags. Define K−1 = K0 = {*}, and
Kk = K for k = 1 . . . n.
Initialization:

Algorithm:

Return:
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Question 4 Say we have a training set consisting of two tagged sentences:

the/DT can/NN is/VB in/IN the/DT shed/NN

the/DT dog/NN can/VB see/VB the/DT cat/NN

We train a bigram tagger of the form

p(x1 . . . xn, y1 . . . yn+1) =
n+1∏
i=1

q(yi|yi−1)
n∏

i=1

e(xi|yi)

using simple maximum-likelihood estimates for the q and e parameters.

If we then use the Viterbi algorithm to find the maximum probability tag sequence
for each of the training sentences, show that the tagger tags both sentences cor-
rectly.

Question 5 Now come up with a training set such that when we train a bigram
tagger using maximum likelihood estimates, the resulting model makes at least one
mistake on the training set.
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