
Questions for Flipped Classroom Session of COMS 4705
Week 13, Fall 2014. (Michael Collins)

Question 1 Consider an application of global linear models to dependency pars-
ing. In this scenario each input x is a sentence. GEN(x) returns the set of all
dependency parses for x. The feature vector f(x, y) for any sentence x paired with
a dependency parse tree y is defined as

f(x, y) =
∑

(h,m)∈y
g(x, h,m)

where g is a function that maps a dependency (h,m) together with the sentence x
to a local feature vector. Here h is the index of the head-word of the dependency,
and m is the index of the modifier word.

We’d like f(x, y) to be a 2-dimensional feature vector, with the following values
for its three components:

f1(x, y) = Num of times a dependency with head car, and modifier the is seen in (x, y)

f2(x, y) = Num of times a dependency with head part-of-speech NN,

modifier part-of-speech DT, no verb between the DT and NN is seen in (x, y)

Give a definition of the function g that leads to this definition of f(x, y). You can
assume that POS(i) for i ∈ {1 . . . n} returns the part-of-speech of word i in the
sentence.
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Question 2 In this question we develop a dynamic programming approach to
finding the highest scoring dependency parse for a sentence. Each dependency
parse y is a set of (h,m) pairs, where h is the index of the head word in the
dependency, m is the index of the modifier word. The global feature vector for a
dependency parse is

f(x, y) =
∑

(h,m)∈y
g(x, h,m)

and the score for a dependency parse is

θ · f(x, y) =
∑

(h,m)∈y
θ · g(x, h,m)

Consider an input sentence x1 . . . xn that we wish to parse. We will construct a
special context-free grammar for the sentence such that there is a one-to-one map-
ping between parse trees in the context-free grammar, and dependency structures.
Each rule in the context-free grammar has an associated score; the score for the en-
tire parse tree is the sum of scores for the rules that it contains; this score is equal
to the score for the dependency parse corresponding to the parse tree.

The grammar we construct will be used to parse the input

0.2 1.1 1.2 2.1 2.2 . . . n.1 n.2

The context-free grammar for a sentence x1 . . . xn is the following:

For i = 1 . . . n, introduce the rule

C[i,i,l,1] → i.1 with Score = 0

For i = 0 . . . n, introduce the rule

C[i,i,r,1] → i.2 with Score = 0

For all i, j, k such that 0 ≤ i ≤ k < j ≤ n, generate the following rules:

C[i,j,l,0] → C[i,k,r,1] C[k + 1,j,l,1] with score θ · g(x, j, i)
C[i,j,r,0] → C[i,k,r,1] C[k + 1,j,l,1] with score θ · g(x, i, j)
C[i,j,l,1] → C[i,k,l,1] C[k,j,l,0] with score 0

C[i,j,r,1] → C[i,k + 1,r,0] C[k + 1,j,r,1] with score 0

The root symbol in the context-free grammar is

C[0,n,r,1]

Question 2a How say we parse the sentence x1 . . . xn = John saw Mary. Show
the parse tree corresponding to the dependency structure where saw is the head
word for the entire sentence, and John and Mary are both modifiers to saw.
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Question 3 Recall that a Brown clustering model consists of:

• A vocabulary V

• A function C : V → {1, 2, . . . k} defining a partition of the vocabulary into
k classes

• A parameter e(v|c) for every v ∈ V , c ∈ {1 . . . k}

• A parameter q(c′|c) for every c′, c ∈ {1 . . . k}

Recall also that given a corpus consisting of a sequence of words w1 . . . wn, the
quality of a Brown clustering model defined by C, e and q, is

Quality(C, e, q) =
n∑

i=1

log e(wi|C(wi))q(C(wi)|C(wi−1))

Question 3a Now say our corpus is the sentence

the dog the dog the dog the dog

and we have k = 2. What are the optimal values of C, e and q?
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