
Questions for Flipped Classroom Session of COMS 4705
Week 12, Fall 2014. (Michael Collins)

Question 1 Consider an application of global linear models to parsing. In this
scenario each input x is a sentence. We have a fixed context-free grammar; GEN(x)
returns the set of all parses allowed for x under the context-free grammar. The fea-
ture vector f(x, y) for any sentence x paired with a parse tree y is defined as

f(x, y) =
∑

α→β∈(x,y)
g(α→ β)

where g is a function that maps a context-free rule α → β to a feature vector, and
the notation α→ β ∈ (x, y) refers to a sum over all context-free rules in the parse
tree defined by (x, y).

We’d like f(x, y) to be a 3-dimensional feature vector, with the following values
for its three components:

f1(x, y) = Number of times S -> NP VP is seen in (x, y)

f2(x, y) = Number of times N -> dog is seen in (x, y)

f3(x, y) = Number of times NP -> NP NP is seen in (x, y)

Give a definition of the function g that leads to this definition of f(x, y).
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Question 2 In this question we develop a global linear model for parsing with
a context-free grammar in Chomsky normal form. The input to the model is a
sentence s = x1 . . . xn where xi is the i’th word in the sentence. We use T (s) to
denote the set of all parse trees for the sentence s. For any parse tree y ∈ T (s), for
any rule X → Y Z in the grammar, for any indices i, k, j such that 1 ≤ i ≤ k <
j ≤ n, we define

δ(y,X → Y Z, i, k, j) = 1

if the rule X → Y Z is seen in the parse tree y, with non-terminal X spanning
words i . . . j inclusive; non-terminal Y spanning words i . . . k inclusive; and non-
terminal Z spanning words k + 1 . . . j inclusive.

For example, for the parse tree
S

NP

D

the

N

dog

VP

saw

we have δ(S→ NP VP, 1, 2, 3) = δ(NP→ D N, 1, 1, 2) = 1, with all other δ val-
ues being equal to 0.

We also assume that we have a feature vector g(s,X → Y Z, i, k, j) ∈ Rd for any
sentence s together with a rule X → Y Z, i, k, j; and a parameter vector v ∈ Rd.
The score for an entire parse tree under parameter values v is

score(y; v) =
∑

X→Y Z,i,k,j

δ(y,X → Y Z, i, k, j) (v · g(s,X → Y Z, i, k, j))

Thus the score for an entire parse tree is a sum of scores for the rules it contains,
where each rule receives the score v · g(s,X → Y Z, i, k, j).

Question 2a Give a dynamic programming algorithm that calculates

max
y∈T (s)

score(y; v)

for any input sentence s = x1 . . . xn. (For convenience, the CKY parsing algorithm
for PCFGs is shown over the page, in figure 1.)

Question 2b Now assume that we have a training set consisting of pairs s(i), y(i)

for i ∈ {1 . . .M}, where each s(i) is a sentence, and each y(i) is a parse tree.
We’d like to train the parameters of the model v using the perceptron algorithm for
training global linear models. Give pseudo-code for the perceptron algorithm for
training the parser below. You can assume that for any s(i), you can calculate

arg max
y∈T (s(i))

score(y; v)

efficiently, where T (s(i)) is the set of all parse trees for the sentence s(i).
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Input: a sentence s = x1 . . . xn, a PCFG G = (N,Σ, S,R, q).
Initialization:
For all i ∈ {1 . . . n}, for all X ∈ N ,

π(i, i,X) =

{
q(X → xi) if X → xi ∈ R
0 otherwise

Algorithm:

• For l = 1 . . . (n− 1)

– For i = 1 . . . (n− l)

∗ Set j = i+ l

∗ For all X ∈ N , calculate

π(i, j,X) = max
X→Y Z∈R,

s∈{i...(j−1)}

(q(X → Y Z)× π(i, s, Y )× π(s+ 1, j, Z))

Output: Return π(1, n, S) = maxt∈T (s) p(t)

Figure 1: The CKY parsing algorithm.

Question 3 Consider a tagging problem where we have a training set with two
training examples:

x(1) = a b c, y(1) = A B C

x(2) = a b e, y(2) = A D E

Now say we define the following features fj(h, y) for j = 1 . . . 9, where h is a
history and y is a tag:

f1(h, y) = 1 if xi = a and y = A, 0 otherwise

f2(h, y) = 1 if xi = b and y = B, 0 otherwise

f3(h, y) = 1 if xi = b and y = D, 0 otherwise

f4(h, y) = 1 if xi = c and y = C, 0 otherwise

f5(h, y) = 1 if xi = e and y = E, 0 otherwise

f6(h, y) = 1 if y−1 = A and y = B, 0 otherwise

f7(h, y) = 1 if y−1 = A and y = D, 0 otherwise

f8(h, y) = 1 if y−1 = B and y = C, 0 otherwise

f9(h, y) = 1 if y−1 = D and y = E, 0 otherwise

Question 3a: Say we train a perceptron-based model with these features. Show
that the algorithm will converge to a solution that recovers the correct tag sequence
on both examples. (For this you just need to come up with parameter values for
v1 . . . v9 that recover the correct tag sequences on both examples.)

Question 3b: Now say we train a log-linear tagger (an MEMM). Show that the
model cannot give p(y(1)|x(1)) = 1 and p(y(2)|x(2)) = 1.
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