Questions for Flipped Classroom Session of COMS 4705
Week 12, Fall 2014. (Michael Collins)

Question 1 Consider an application of global linear models to parsing. In this
scenario each input x is a sentence. We have a fixed context-free grammar; GEN(z)
returns the set of all parses allowed for x under the context-free grammar. The fea-
ture vector f(x,y) for any sentence x paired with a parse tree y is defined as

flzy)= Y gla—=p)

a—pBe(z,y)

where ¢ is a function that maps a context-free rule & — 3 to a feature vector, and
the notation « — (3 € (x, y) refers to a sum over all context-free rules in the parse
tree defined by (z,y).

We’d like f(z,y) to be a 3-dimensional feature vector, with the following values
for its three components:

fi(z,y) = Number of times S —> NP VP is seenin (z,y)
fo(x,y) = Number of times N —> dogis seenin (x,y)
fs(x,y) = Number of times NP —> NP NP is seenin (x,y)

Give a definition of the function g that leads to this definition of f(z,y).



Question 2 In this question we develop a global linear model for parsing with
a context-free grammar in Chomsky normal form. The input to the model is a
sentence s = x1 ...x, where x; is the i’th word in the sentence. We use 7 (s) to
denote the set of all parse trees for the sentence s. For any parse tree y € 7T (s), for
any rule X — Y Z in the grammar, for any indices i, k, j such that 1 < i < k <
j < n, we define

0y, X =Y Z,i,k,j)=1

if the rule X — Y Z is seen in the parse tree y, with non-terminal X spanning
words ¢ . . . j inclusive; non-terminal Y spanning words ¢ . . . k inclusive; and non-
terminal Z spanning words k£ + 1. .. j inclusive.

For example, for the parse tree

S
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NP VP
N |
D N saw
\ \
the dog

we have 6(S — NP VP, 1,2,3) = §(NP — DN, 1, 1,2) = 1, with all other ¢ val-
ues being equal to 0.

We also assume that we have a feature vector g(s, X — Y Z,i,k,j) € R? for any
sentence s together with arule X — Y Z,4, k, j; and a parameter vector v € R,
The score for an entire parse tree under parameter values v is

score(y;v) = . Oy, X =Y Zik,j) (v g(s,X =Y Z,i,k,j))
XY Zik,j

Thus the score for an entire parse tree is a sum of scores for the rules it contains,
where each rule receives the score v - g(s, X — Y Z i, k, j).

Question 2a Give a dynamic programming algorithm that calculates

max_score(y; v
e (y;v)
for any input sentence s = 1 . .. x,. (For convenience, the CKY parsing algorithm
for PCFGs is shown over the page, in figure 1.)

Question 2b Now assume that we have a training set consisting of pairs s, y(?)
for i € {1...M}, where each s() is a sentence, and each y(¥) is a parse tree.
We’d like to train the parameters of the model v using the perceptron algorithm for
training global linear models. Give pseudo-code for the perceptron algorithm for
training the parser below. You can assume that for any s(), you can calculate

arg max score(y;v)
YeT (sM)

efficiently, where 7 (s(?)) is the set of all parse trees for the sentence s(*).



Input: a sentence s = 1 ...2n, a PCFG G = (N, X, S, R, q).
Initialization:
Foralli € {1...n},forall X € N,

wlii, X) = (X — x;) 1fiji€R
0 otherwise
Algorithm:
e Forl=1...(n—1)
- Fori=1...(n—-1)

* Setj=1+1

*x Forall X € N, calculate
w(i,5,X)= max (¢(X =YZ)xn(i,sY)xn(s+1,35,2))

X—YZeR,

sefi...(j—1)}

Output: Return 7(1, n, S) = max,c7(s) p(t)

Figure 1: The CKY parsing algorithm.
Question 3 Consider a tagging problem where we have a training set with two
training examples:

x(l):ab c, y(l):AB C
t? =a b e, y(2):AD E

Now say we define the following features f;(h,y) for j = 1...9, where h is a
history and y is a tag:

fi(h,y) = 1lifz; =aandy = A, 0 otherwise
fa(h,y) = 1lifz; =bandy = B, 0 otherwise
fa(h,y) = 1lifx; =bandy =D, 0 otherwise
fa(h,y) = 1lifx; = candy = C, 0 otherwise
fs(h,y) = 1lifxz; =eandy =E, 0 otherwise
fe(h,y) = 1ify_; = Aand y = B, 0 otherwise
f7(h,y) = 1ify_; = Aand y =D, 0 otherwise
fs(h,y) = 1lify_; =Bandy = C, 0 otherwise
fo(h,y) = 1lify_; =Dandy = E, 0 otherwise

Question 3a: Say we train a perceptron-based model with these features. Show
that the algorithm will converge to a solution that recovers the correct tag sequence
on both examples. (For this you just need to come up with parameter values for
v1 . .. Vg that recover the correct tag sequences on both examples.)

Question 3b: Now say we train a log-linear tagger (an MEMM). Show that the
model cannot give p(y™M|z(M) = 1 and p(y?|z?)) = 1.



