
Questions for Flipped Classroom Session of COMS 4705
Week 11, Fall 2014. (Michael Collins)

Question 1 In this question we consider the problem of mapping a sentence to
an underlying sequence of tags, using a log-linear tagger. The input to the tagger
is a sequence of words x1x2 . . . xN , where each xi is an English word. The output
from the tagger is a sequence of tags y1y2 . . . yN . Each tag yi can take any one
of four possible states, A, B, C or D. Looking at the data, we notice that tag
sequences follow the following rules:

• The tag y1 is always equal to either A or B.

• For all tag bigrams yj , yj+1, we either have yj ∈ {A,B}, and yj+1 ∈
{C,D}; or we have yj ∈ {C,D}, and yj+1 ∈ {A,B}. (That is, we never
see the tag bigrams AA, AB, BA, BB, CC, CD, DC or DD.)

• If the j’th word xj in the sequence has an odd number of letters, its tag yj is
always equal to eitherA or C. If the j’th word has an even number of letters,
its tag is always equal to either B or D.

We will use a log-linear bigram tagger to map sentences to tag sequences. The
model takes the form

p(y1 . . . yN |x1 . . . xN ) =
N∏
j=1

p(yj |yj−1, x1 . . . xN , j)

where

p(yj |yj−1, x1 . . . xN , j) =
exp{v · f(yj−1, x1 . . . xN , j, yj)∑

y∈{A,B,C,D} exp{v · f(yj−1, x1 . . . xN , j, y)}

and f(yj−1, x1 . . . xN , j, y) ∈ Rd is a feature vector, and v ∈ Rd is a parameter
vector, where d is the number of parameters.

Question: Give a feature-vector definition f(yj−1, x1 . . . xN , j, y) ∈ Rd that al-
lows the model to perfectly model the constraints given above.
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Question 2 Say we are running the perceptron algorithm. We have reached ex-
ample xi and the set {f(xi, y) : y ∈ GEN(xi)} consists of the following vectors:

(a) 〈1, 0, 1, 1〉

(b) 〈1, 1, 1, 0〉

(c) 〈0, 0, 1, 1〉

Assume also that f(xi, yi) = 〈0, 0, 1, 1〉.

Question: Give a setting for the parameter vector v that ensures that the output of
the global linear model on xi is yi.

Question: Now assume that v = 〈1, 1,−1,−1〉 immediately before this example
is considered by the algorithm. What will the value of v be a the end of this
iteration?

Question: Now assume that v = 〈1, 1,−1,−1〉, and we run the perceptron algo-
rithm repeatedly on the example above. What parameter values does the algorithm
converge to? Assume that when computing

arg max
y∈GEN(xi)

v · f(xi, y)

any ties in the score v · f(xi, y) are broken in the order (a) > (b) > (c).
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Inputs: Training set (xi, yi) for i = 1 . . . n

Initialization: v = 0

Define: f(x) = argmaxy∈GEN(x) f(x, y) · v

Algorithm: For t = 1 . . . T , i = 1 . . . n
Define Zi = {z : z ∈ GEN(xi), z 6= yi, f(xi, zi) · v ≥ f(xi, yi) · v}.
If Zi 6= ∅:
(1) Choose zi to be any member of Zi

(2) v = v + f(xi, yi)− f(xi, zi)

Output: Parameters v

Figure 1: A modified version of the perceptron algorithm.

Question 3 Figure 1 shows a modified version of the perceptron algorithm. Show
that under the same definitions for δ andR for the regular perceptron, the algorithm
makes at most

R2

δ2

updates to v before convergence. (See over the page for the proof of convergence
for the regular perceptron algorithm.)
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Appendix to Question 3: Proof of Convergence for the Perceptron Algorithm

• Definition: GEN(xi) = GEN(xi)− {yi}

• Definition: The training set is separable with margin δ,
if there is a vector u ∈ Rd with ||u||2 = 1 such that

∀i,∀z ∈ GEN(xi) u · f(xi, yi)− u · f(xi, z) ≥ δ

Theorem: For any training sequence (xi, yi) which is separable with margin δ,
then for the perceptron algorithm

N ≤ R2

δ2

whereN is the number of updates to v,R is a constant such that ∀i,∀z ∈ GEN(xi)
||f(xi, yi)− f(xi, z)||2 ≤ R

Proof: Direct modification of the proof for the classification case.

Let vk be the weights before the k’th mistake. v1 = 0

If the k’th mistake is made at i’th example,
and zi = argmaxy∈GEN(xi)

f(xi, y) · vk, then

vk+1 = vk + f(xi, yi)− f(xi, zi)
⇒ u · vk+1 = u · vk + u · f(xi, yi)− u · f(xi, zi)

≥ u · vk + δ

≥ kδ

⇒ ||vk+1||2 ≥ kδ

Also,

||vk+1||22 = ||vk||22 + ||f(xi, yi)− f(xi, zi)||22 + 2vk · (f(xi, yi)− f(xi, zi))
≤ ||vk||22 +R2

⇒ ||vk+1||22 ≤ kR2

⇒ k2δ2 ≤ ||vk+1||22 ≤ kR2

⇒ k ≤ R2/δ2
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