Questions for Flipped Classroom Session of COMS 4705 Week 11, Fall 2014. (Michael Collins)

Question 1 In this question we consider the problem of mapping a sentence to an underlying sequence of tags, using a log-linear tagger. The input to the tagger is a sequence of words $x_1x_2...x_N$, where each x_i is an English word. The output from the tagger is a sequence of tags $y_1y_2...y_N$. Each tag y_i can take any one of four possible states, A, B, C or D. Looking at the data, we notice that tag sequences follow the following rules:

- The tag y_1 is always equal to either A or B.
- For all tag bigrams y_j, y_{j+1} , we either have $y_j \in \{A, B\}$, and $y_{j+1} \in \{C, D\}$; or we have $y_j \in \{C, D\}$, and $y_{j+1} \in \{A, B\}$. (That is, we never see the tag bigrams AA, AB, BA, BB, CC, CD, DC or DD.)
- If the j'th word x_j in the sequence has an odd number of letters, its tag y_j is always equal to either A or C. If the j'th word has an even number of letters, its tag is always equal to either B or D.

We will use a log-linear bigram tagger to map sentences to tag sequences. The model takes the form

$$p(y_1 \dots y_N | x_1 \dots x_N) = \prod_{j=1}^N p(y_j | y_{j-1}, x_1 \dots x_N, j)$$

where

$$p(y_j|y_{j-1}, x_1 \dots x_N, j) = \frac{\exp\{v \cdot f(y_{j-1}, x_1 \dots x_N, j, y_j)}{\sum_{y \in \{A, B, C, D\}} \exp\{v \cdot f(y_{j-1}, x_1 \dots x_N, j, y)\}}$$

and $f(y_{j-1}, x_1 \dots x_N, j, y) \in \mathbb{R}^d$ is a feature vector, and $v \in \mathbb{R}^d$ is a parameter vector, where d is the number of parameters.

Question: Give a feature-vector definition $f(y_{j-1}, x_1 \dots x_N, j, y) \in \mathbb{R}^d$ that allows the model to perfectly model the constraints given above.

Question 2 Say we are running the perceptron algorithm. We have reached example x_i and the set $\{f(x_i, y) : y \in \text{GEN}(x_i)\}$ consists of the following vectors:

- (a) $\langle 1, 0, 1, 1 \rangle$
- (b) $\langle 1, 1, 1, 0 \rangle$
- (c) $\langle 0, 0, 1, 1 \rangle$

Assume also that $f(x_i, y_i) = \langle 0, 0, 1, 1 \rangle$.

Question: Give a setting for the parameter vector v that ensures that the output of the global linear model on x_i is y_i .

Question: Now assume that $v = \langle 1, 1, -1, -1 \rangle$ immediately before this example is considered by the algorithm. What will the value of v be a the end of this iteration?

Question: Now assume that $v = \langle 1, 1, -1, -1 \rangle$, and we run the perceptron algorithm repeatedly on the example above. What parameter values does the algorithm converge to? Assume that when computing

$$\arg \max_{y \in \operatorname{GEN}(x_i)} v \cdot f(x_i, y)$$

any ties in the score $v \cdot f(x_i, y)$ are broken in the order (a) > (b) > (c).

Inputs:	Training set (x_i, y_i) for $i = 1 \dots n$
Initialization:	v = 0
Define:	$f(x) = \operatorname{argmax}_{y \in \operatorname{\mathbf{GEN}}(x)} f(x, y) \cdot v$
Algorithm:	For $t = 1 \dots T$, $i = 1 \dots n$ Define $\mathcal{Z}_i = \{z : z \in \text{GEN}(x_i), z \neq y_i, f(x_i, z_i) \cdot v \ge f(x_i, y_i) \cdot v\}.$ If $\mathcal{Z}_i \neq \emptyset$: (1) Choose z_i to be any member of \mathcal{Z}_i (2) $v = v + f(x_i, y_i) - f(x_i, z_i)$
Output:	Parameters v

Figure 1: A modified version of the perceptron algorithm.

Question 3 Figure 1 shows a modified version of the perceptron algorithm. Show that under the same definitions for δ and R for the regular perceptron, the algorithm makes at most

$$\frac{R^2}{\delta^2}$$

updates to v before convergence. (See over the page for the proof of convergence for the regular perceptron algorithm.)

Appendix to Question 3: Proof of Convergence for the Perceptron Algorithm

- **Definition:** $\overline{\text{GEN}}(x_i) = \text{GEN}(x_i) \{y_i\}$
- Definition: The training set is separable with margin δ , if there is a vector $u \in \mathbb{R}^d$ with $||u||_2 = 1$ such that

$$\forall i, \forall z \in \text{GEN}(x_i) \quad u \cdot f(x_i, y_i) - u \cdot f(x_i, z) \ge \delta$$

Theorem: For any training sequence (x_i, y_i) which is separable with margin δ , then for the perceptron algorithm

$$N \le \frac{R^2}{\delta^2}$$

where N is the number of updates to v, R is a constant such that $\forall i, \forall z \in \overline{\text{GEN}}(x_i)$ $||f(x_i, y_i) - f(x_i, z)||_2 \leq R$

Proof: Direct modification of the proof for the classification case.

Let v^k be the weights before the k'th mistake. $v^1 = 0$

If the k'th mistake is made at i'th example, and $z_i = \operatorname{argmax}_{y \in \operatorname{GEN}(x_i)} f(x_i, y) \cdot v^k$, then

$$v^{k+1} = v^k + f(x_i, y_i) - f(x_i, z_i)$$

$$\Rightarrow u \cdot v^{k+1} = u \cdot v^k + u \cdot f(x_i, y_i) - u \cdot f(x_i, z_i)$$

$$\geq u \cdot v^k + \delta$$

$$\geq k\delta$$

$$\Rightarrow ||v^{k+1}||_2 \geq k\delta$$

Also,

$$\begin{aligned} ||v^{k+1}||_{2}^{2} &= ||v^{k}||_{2}^{2} + ||f(x_{i}, y_{i}) - f(x_{i}, z_{i})||_{2}^{2} + 2v^{k} \cdot (f(x_{i}, y_{i}) - f(x_{i}, z_{i})) \\ &\leq ||v^{k}||_{2}^{2} + R^{2} \\ \Rightarrow ||v^{k+1}||_{2}^{2} &\leq kR^{2} \\ &\Rightarrow k^{2}\delta^{2} &\leq ||v^{k+1}||_{2}^{2} \leq kR^{2} \\ &\Rightarrow k &\leq R^{2}/\delta^{2} \end{aligned}$$