Questions for Flipped Classroom Session of COMS 4705 Week 11, Fall 2014. (Michael Collins)

Question 1 In this question we consider the problem of mapping a sentence to an underlying sequence of tags, using a log-linear tagger. The input to the tagger is a sequence of words $x_{1} x_{2} \ldots x_{N}$, where each x_{i} is an English word. The output from the tagger is a sequence of tags $y_{1} y_{2} \ldots y_{N}$. Each tag y_{i} can take any one of four possible states, A, B, C or D. Looking at the data, we notice that tag sequences follow the following rules:

- The tag y_{1} is always equal to either A or B.
- For all tag bigrams y_{j}, y_{j+1}, we either have $y_{j} \in\{A, B\}$, and $y_{j+1} \in$ $\{C, D\}$; or we have $y_{j} \in\{C, D\}$, and $y_{j+1} \in\{A, B\}$. (That is, we never see the tag bigrams $A A, A B, B A, B B, C C, C D, D C$ or $D D$.)
- If the j 'th word x_{j} in the sequence has an odd number of letters, its tag y_{j} is always equal to either A or C. If the j 'th word has an even number of letters, its tag is always equal to either B or D.

We will use a log-linear bigram tagger to map sentences to tag sequences. The model takes the form

$$
p\left(y_{1} \ldots y_{N} \mid x_{1} \ldots x_{N}\right)=\prod_{j=1}^{N} p\left(y_{j} \mid y_{j-1}, x_{1} \ldots x_{N}, j\right)
$$

where

$$
p\left(y_{j} \mid y_{j-1}, x_{1} \ldots x_{N}, j\right)=\frac{\exp \left\{v \cdot f\left(y_{j-1}, x_{1} \ldots x_{N}, j, y_{j}\right)\right.}{\sum_{y \in\{A, B, C, D\}} \exp \left\{v \cdot f\left(y_{j-1}, x_{1} \ldots x_{N}, j, y\right)\right\}}
$$

and $f\left(y_{j-1}, x_{1} \ldots x_{N}, j, y\right) \in \mathbb{R}^{d}$ is a feature vector, and $v \in \mathbb{R}^{d}$ is a parameter vector, where d is the number of parameters.

Question: Give a feature-vector definition $f\left(y_{j-1}, x_{1} \ldots x_{N}, j, y\right) \in \mathbb{R}^{d}$ that allows the model to perfectly model the constraints given above.

Question 2 Say we are running the perceptron algorithm. We have reached example x_{i} and the set $\left\{f\left(x_{i}, y\right): y \in \operatorname{GEN}\left(x_{i}\right)\right\}$ consists of the following vectors:
(a) $\langle 1,0,1,1\rangle$
(b) $\langle 1,1,1,0\rangle$
(c) $\langle 0,0,1,1\rangle$

Assume also that $f\left(x_{i}, y_{i}\right)=\langle 0,0,1,1\rangle$.
Question: Give a setting for the parameter vector v that ensures that the output of the global linear model on x_{i} is y_{i}.

Question: Now assume that $v=\langle 1,1,-1,-1\rangle$ immediately before this example is considered by the algorithm. What will the value of v be a the end of this iteration?

Question: Now assume that $v=\langle 1,1,-1,-1\rangle$, and we run the perceptron algorithm repeatedly on the example above. What parameter values does the algorithm converge to? Assume that when computing

$$
\arg \max _{y \in \operatorname{GEN}\left(x_{i}\right)} v \cdot f\left(x_{i}, y\right)
$$

any ties in the score $v \cdot f\left(x_{i}, y\right)$ are broken in the order $(\mathrm{a})>(\mathrm{b})>(\mathrm{c})$.

$$
\text { Inputs: } \quad \text { Training set }\left(x_{i}, y_{i}\right) \text { for } i=1 \ldots n
$$

Initialization: $\quad v=0$

Define: $\quad f(x)=\operatorname{argmax}_{y \in \operatorname{GEN}(x)} f(x, y) \cdot v$

Algorithm: \quad| For $t=1 \ldots T, i=1 \ldots n$ | |
| :--- | :--- |
| | Define $\mathcal{Z}_{i}=\left\{z: z \in \operatorname{GEN}\left(x_{i}\right), z \neq y_{i}, f\left(x_{i}, z_{i}\right) \cdot v \geq f\left(x_{i}, y_{i}\right) \cdot v\right\}$. |
| | If $\mathcal{Z}_{i} \neq \emptyset:$ |
| | (1) Choose z_{i} to be any member of \mathcal{Z}_{i} |
| | (2) $v=v+f\left(x_{i}, y_{i}\right)-f\left(x_{i}, z_{i}\right)$ |

Output: \quad Parameters v

Figure 1: A modified version of the perceptron algorithm.

Question 3 Figure 1 shows a modified version of the perceptron algorithm. Show that under the same definitions for δ and R for the regular perceptron, the algorithm makes at most

$$
\frac{R^{2}}{\delta^{2}}
$$

updates to v before convergence. (See over the page for the proof of convergence for the regular perceptron algorithm.)

Appendix to Question 3: Proof of Convergence for the Perceptron Algorithm

- Definition: $\overline{\operatorname{GEN}}\left(x_{i}\right)=\operatorname{GEN}\left(x_{i}\right)-\left\{y_{i}\right\}$
- Definition: The training set is separable with margin δ, if there is a vector $u \in \mathbb{R}^{d}$ with $\|u\|_{2}=1$ such that

$$
\forall i, \forall z \in \overline{\operatorname{GEN}}\left(x_{i}\right) \quad u \cdot f\left(x_{i}, y_{i}\right)-u \cdot f\left(x_{i}, z\right) \geq \delta
$$

Theorem: For any training sequence $\left(x_{i}, y_{i}\right)$ which is separable with margin δ, then for the perceptron algorithm

$$
N \leq \frac{R^{2}}{\delta^{2}}
$$

where N is the number of updates to v, R is a constant such that $\forall i, \forall z \in \overline{\operatorname{GEN}}\left(x_{i}\right)$ $\left\|f\left(x_{i}, y_{i}\right)-f\left(x_{i}, z\right)\right\|_{2} \leq R$

Proof: Direct modification of the proof for the classification case.
Let v^{k} be the weights before the k 'th mistake. $v^{1}=0$
If the k 'th mistake is made at i 'th example, and $z_{i}=\operatorname{argmax}_{y \in \operatorname{GEN}\left(x_{i}\right)} f\left(x_{i}, y\right) \cdot v^{k}$, then

$$
\begin{aligned}
v^{k+1} & =v^{k}+f\left(x_{i}, y_{i}\right)-f\left(x_{i}, z_{i}\right) \\
\Rightarrow u \cdot v^{k+1} & =u \cdot v^{k}+u \cdot f\left(x_{i}, y_{i}\right)-u \cdot f\left(x_{i}, z_{i}\right) \\
& \geq u \cdot v^{k}+\delta \\
& \geq k \delta \\
\Rightarrow\left\|v^{k+1}\right\|_{2} & \geq k \delta
\end{aligned}
$$

Also,

$$
\begin{aligned}
\left\|v^{k+1}\right\|_{2}^{2} & =\left\|v^{k}\right\|_{2}^{2}+\left\|f\left(x_{i}, y_{i}\right)-f\left(x_{i}, z_{i}\right)\right\|_{2}^{2}+2 v^{k} \cdot\left(f\left(x_{i}, y_{i}\right)-f\left(x_{i}, z_{i}\right)\right) \\
& \leq\left\|v^{k}\right\|_{2}^{2}+R^{2} \\
\Rightarrow\left\|v^{k+1}\right\|_{2}^{2} & \leq k R^{2} \\
\Rightarrow k^{2} \delta^{2} & \leq\left\|v^{k+1}\right\|_{2}^{2} \leq k R^{2} \\
\Rightarrow k & \leq R^{2} / \delta^{2}
\end{aligned}
$$

