We would like

$$
\sum_{n=1}^{\infty} \sum_{w_{1} \ldots w_{n}} p\left(w_{1} \ldots w_{n}\right)=\sum_{n=1}^{\infty} \sum_{w_{1} \ldots w_{n}} g\left(w_{1} \ldots w_{n}, n\right) \times 0.5^{n}=1
$$

where we can choose the function $g\left(w_{1} \ldots w_{n}, n\right)$.
Note that we have 3 words in the vocabulary \mathcal{V}, so there are 3^{n-1} sequences of the form $w_{1} \ldots w_{n}$. If we set

$$
g\left(w_{1} \ldots w_{n}, n\right)=\frac{1}{3^{n-1}}
$$

then

$$
\begin{aligned}
\sum_{n=1}^{\infty} \sum_{w_{1} \ldots w_{n}} g\left(w_{1} \ldots w_{n}, n\right) \times 0.5^{n} & =\sum_{n=1}^{\infty} 0.5^{n} \underbrace{\sum_{w_{1} \ldots w_{n}} g\left(w_{1} \ldots w_{n}, n\right)}_{=1} \\
& =\sum_{n=1}^{\infty} 0.5^{n}=1
\end{aligned}
$$

We have

$$
\begin{aligned}
\sum_{u \in \mathcal{V}, v \in \mathcal{V}} P\left(X_{1}=u, X_{2}=v\right) & =\sum_{u \in \mathcal{V}, v \in \mathcal{V}} P\left(X_{1}=u\right) \times P\left(X_{2}=v\right) \\
& =\sum_{u \in \mathcal{V}} P\left(X_{1}=u\right) \sum_{v \in \mathcal{V}} P\left(X_{2}=v\right) \\
& =\sum_{=1} P\left(X_{1}=u\right) \\
& =1
\end{aligned}
$$

We have

$$
\begin{aligned}
& \sum_{u \in \mathcal{V}, v \in \mathcal{V}} P\left(X_{1}=u, X_{2}=v\right) \\
= & \sum_{u \in \mathcal{V}, v \in \mathcal{V}} P\left(X_{1}=u\right) \times P\left(X_{2}=v \mid X_{1}=u\right) \\
= & \sum_{u \in \mathcal{V}} P\left(X_{1}=u\right) \underbrace{\sum_{v \in \mathcal{V}} P\left(X_{2}=v \mid X_{1}=u\right)}_{=1} \\
= & \sum_{u \in \mathcal{V}} P\left(X_{1}=u\right) \\
= & 1
\end{aligned}
$$

$$
\begin{aligned}
& p(\text { He saw their was a football in the park ? }) \\
= & q(\mathrm{He}) \times q(\text { saw }) \times q(\text { their }) \times q(\text { was }) \times \ldots
\end{aligned}
$$

$p($ He saw there was a football in the park ?)
$=q(\mathrm{He}) \times q($ saw $) \times q($ there $) \times q($ was $) \times \ldots$
p (He saw their was a football in the park ?)
$>p(\mathrm{He}$ saw there was a football in the park ?)
if and only if

$$
q(\text { their })>q(\text { there })
$$

p (He saw their was a football in the park ?)
$=q(\mathrm{He}) \times q($ saw $\mid \mathrm{He}) \times q($ their \mid saw $) \times q($ was \mid their $) \times \ldots$
p (He saw there was a football in the park ?)
$=q(\mathrm{He}) \times q($ saw $\mid \mathrm{He}) \times q($ there \mid saw $) \times q($ was \mid there $) \times \ldots$

- Model is now sensitive to context (word before or after their or there)
- But if Count $\left(w_{i-1}, w_{i}\right)=0$ for any pair of words, then $p\left(w_{1} \ldots w_{n}\right)=0$, which will cause problems.

1a) The dog in the park was big
1b) The dogs in the park were big
2) The dog which the cat saw is big

There are many other examples

