
1 UCSC-CRL-87-28 AbstractValiant (1984) and others have studied the problem of learning vari-ous classes of Boolean functions from examples. Here we discuss in-cremental learning of these functions. We consider a setting in whichthe learner responds to each example according to a current hypothesis.Then the learner updates the hypothesis, if necessary, based on the cor-rect classi�cation of the example. One natural measure of the qualityof learning in this setting is the number of mistakes the learner makes.For suitable classes of functions, learning algorithms are available thatmake a bounded number of mistakes, with the bound independent ofthe number of examples seen by the learner. We present one such al-gorithm that learns disjunctive Boolean functions, along with variantsfor learning other classes of Boolean functions. The basic method canbe expressed as a linear-threshold algorithm. A primary advantage ofthis algorithm is that the number of mistakes grows only logarithmic-ally with the number of irrelevant attributes in the examples. At thesame time, the algorithm is computationally e�cient in both time andspace.

1

Learning Quickly When IrrelevantAttributes Abound:A New Linear-threshold AlgorithmNick LittlestoneDecember, 19871 IntroductionIn this paper, we consider learning from examples in a situation inwhich the goal of the learner is simply to make few mistakes. The taskis to induce a concept that can be described by a Boolean function;that is, the information received in each example is a list of Booleanattributes and the correct response is a Boolean function of the at-tributes. We are interested in cases where the correct-response func-tion depends on only a small proportion of the attributes present ineach example. For example, this case may occur in pattern recognitiontasks; feature detectors may extract a large number of features for thelearner's consideration, not knowing which few will prove useful. Foranother example, consider an environment in which the learner buildsnew concepts as Boolean functions of old concepts (Banerji, 1985; Vali-ant, 1984). Here the learner may need to sift through a large libraryof available concepts to �nd the suitable ones to use in expressing eachnew concept. In a special case of this situation, one may design alibrary of concepts speci�cally to ease learning of a certain class ofcomplex functions. In this case one chooses concepts for the librarythat allow representation of any function in the class as a simple func-tion of the library concepts. In the context of this paper, the conceptsin the library will just be Boolean functions themselves. For example,consider k-DNF, the class of Boolean functions that can be represen-ted in disjunctive normal form with no more than k literals per term�This research was supported by ONR grant N00014-86-K-0454. This technical reportis essentially identical to the paper of the same title appearing in Machine Learning 2:285{318, 1987, Kluwer Academic Publishers, Boston2

(Valiant, 1985). If one has available intermediate concepts that includeall conjunctions of no more than k literals, then any k-DNF functioncan be represented as a simple disjunction of these concepts. We willreturn to this idea at the end of the paper, presenting an algorithm forlearning k-DNF.Our main result is an algorithm that deals e�ciently with largenumbers of irrelevant attributes. If desired, it can be implementedwithin a neural net framework (Rumelhart & McClelland, 1986) as asimple linear-threshold algorithm. The method learns certain classes offunctions that can be computed by a one-layer linear-threshold network;these include, among other functions, disjunctions, conjunctions, andr-of-k threshold functions (Hampson & Volper, 1986; Kearns, Li, Pitt,& Valiant, 1987a). (The latter functions are true if at least r out of kdesignated variables are true.) Preprocessing techniques can be usedto extend the algorithm to classes of Boolean functions that are notlinearly separable, such as k-DNF (for �xed k). When our algorithm isapplied to k-DNF formulas with few terms, it makes signi�cantly fewermistakes than the algorithm presented by Valiant (1984, 1985). Thealgorithm is similar to classical perceptron algorithms, but it uses amultiplicative weight-update scheme that permits it to do much betterthan classical perceptron training algorithms when many attributes areirrelevant.We study learning in an on-line setting. By this we mean thatthere is no separate set of training examples. The learner attempts topredict the appropriate response for each example, starting with the�rst example received. After making this prediction, the learner is toldwhether the prediction was correct, and then uses this information toimprove its hypothesis. The learner continues to learn as long as itreceives examples; that is, it continues to examine the information itreceives in an e�ort to improve its hypothesis. In this setting, it isadvantageous to use an algorithm that computes successive hypothesesincrementally, saving work that would be required to calculate everyhypothesis from scratch from stored input examples. Our algorithm isincremental in this sense.We evaluate the algorithm's learning behavior by counting the worst-case number of mistakes that it will make while learning a function froma speci�ed class of functions. We also consider computational complex-ity. We will prove that the mistake bound of our algorithm is withina constant factor of optimal when the algorithm is applied to certainclasses of functions. The method is also computationally time and spacee�cient.Before we present the algorithm we will discuss some properties ofmistake bounds for concept classes, including general lower bounds. Wewill also demonstrate a close relationship between exact identi�cation3

with equivalence queries, as presented by Angluin (1987), and learningwith a bounded number of mistakes.The mistake bounds that we present are strong in the sense that theydo not depend on any assumption about which examples the learnersees or the order in which it sees them: the selection and orderingcan be done by an adversary. However, due to the freedom given theadversary, we cannot say how early the learner will make the mistakes.For example, a single instance could be repeated arbitrarily many timesat the beginning of the sequence of trials and then followed by otherinstances for which the learner does not yet know how to respond.One can adapt mistake-bounded algorithms to work well accordingto criteria that are useful in other settings. For example, considera setting in which the learning process is separated into two phases:a training phase and a subsequent working phase. Learning occursonly during the training phase; mistakes are counted only during theworking phase. Thus the only important hypothesis is the one formedby the learner at the conclusion of the training phase. One usefulmodel in this context is the probabilistic model introduced by Valiant(1984) and discussed by Blumer, Ehrenfeucht, Haussler, and Warmuth(1987a, 1987b) and Angluin (1987). Starting with a mistake-boundedalgorithm, one can derive an algorithm that does well under the criteriaof this probabilistic model. We mention one indirect way to do this,using Angluin's (1987) results. Kearns, Li, Pitt, and Valiant (1987b)have mentioned a related technique.Another change that one might make to the learning model involveskeeping the on-line setting, but analyzing it with probabilistic instead ofworst-case assumptions. One can use the probabilistic model mentionedabove to this end. Haussler, Littlestone, and Warmuth (1987) discussa related model developed particularly for this setting.It is interesting to compare our main algorithm to similar clas-sical methods for perceptron training. Hampson and Volper (1986)present empirical evidence that, for one classical perceptron algorithm,the number of mistakes grows linearly with the number of irrelevantattributes. This is in keeping with theoretical bounds from the per-ceptron convergence theorem (Hampson & Volper, 1986; Duda & Hart,1973; Nilsson, 1965). We know of no evidence that any other standardperceptron algorithm does better. In contrast, we will prove that thenumber of mistakes that our algorithm makes grows only logarithmic-ally with the number of irrelevant attributes.Others have looked at the problem of dealing e�ciently with irrel-evant attributes in the context of learning Boolean functions. Haussler(1986) mentions two algorithms for learning disjunctive functions inthe context of Valiant's learning model. One of them is designed tolearn rapidly in the presence of irrelevant attributes. However, that4

algorithm is not naturally incremental, and thus is signi�cantly lesstime and space e�cient than ours when used in an on-line setting.Valiant (1984, 1985) introduces a mechanism by which a friendly andknowledgeable teacher can help the learner by indicating which attrib-utes are relevant. Hampson and Volper (1986), in addition to theirstudy of classical perceptron algorithms, have experimented with newalgorithms that use conditional probabilities in an e�ort to reduce thecost of irrelevant attributes. They do not present theoretical boundsfor these algorithms.The mistake-counting model that we use is essentially the same asa model discussed in Barzdin and Freivald (1972). See Angluin andSmith (1983) for a survey that compares a number of learning models.2 The settingIn this section we will describe in more detail the learning environmentthat we consider and the classes of functions that our algorithm canlearn. We assume that learning takes place in a sequence of trials. Theorder of events in a trial is as follows:(1) The learner receives some information about the world, corres-ponding to a single example. This information consists of the valuesof n Boolean attributes, for some n that remains �xed. We think ofthe information received as a point in f0; 1gn. We call this point aninstance and we call f0; 1gn the instance space.(2) The learner makes a response. The learner has a choice of tworesponses, labeled 0 and 1. We call this response the learner's predictionof the correct value.(3) The learner is told whether or not the response was correct. Thisinformation is called the reinforcement.Each trial begins after the previous trial has ended.We assume that for the entire sequence of trials, there is a singlefunction f : f0; 1gn ! f0; 1g which maps each instance to the correctresponse to that instance. We call this function the target function ortarget concept.We call an algorithm for learning in this setting an algorithm foron-line learning from examples. When we speak of learning algorithmswithout further quali�cation we refer to algorithms for on-line learningfrom examples. For this paper we restrict our attention to deterministicalgorithms.We will present mistake bounds as worst case bounds over someclass of possible target functions, which we will call the target class.5

3 The nature of absolute mistake boundsIn this section we give some general results about mistake bounds foron-line learning from examples. We present upper and lower boundson the number of mistakes in the case where one ignores issues of com-putational e�ciency. The instance space can be any �nite space X ,and the target class is assumed to be a collection of functions, eachwith domain X and range f0; 1g. The results also apply to in�nite X ,provided that the target class remains �nite. However, computabilityissues may arise in this case, and we do not consider them here.For any learning algorithm A and any target function f , let MA(f)be the maximum over all possible sequences of instances of the numberof mistakes that algorithm A makes when the target function is f .For any learning algorithm A and any non-empty target class C, letMA(C) = maxf2C MA(f).1 De�ne MA(C) = �1 if C is empty. Anynumber greater than or equal to MA(C) will be called a mistake boundfor algorithm A applied to class C.De�nition 1 The optimal mistake bound for a target class C, denotedopt(C), is the minimum over all learning algorithms A of MA(C). Thisminimum is taken over all algorithms regardless of their computationale�ciency. An algorithm A is called optimal for class C if MA(C) =opt(C).Thus opt(C) represents the best possible worst case mistake boundfor any algorithm learning C.If computational resources are no issue, there is a straightforwardlearning algorithm that has excellent mistake bounds for many classesof functions. This algorithm uses the idea of repeated halving of the setof plausible hypotheses. This idea appears in various forms in Barzdinand Freivald (1972), Mitchell (1982), and Angluin (1987). We restateit in the current context because it gives an upper limit on the mistakebound and because it suggests strategies that one might explore insearching for computationally e�cient algorithms.Algorithm 1 (halving algorithm)The halving algorithm can be applied to any �nite class C of func-tions taking values in f0; 1g. It maintains a list of all of the functionsin the class that agree with the target function on all past instances.We will call the functions on this list the consistent functions. In the1Some algorithms that we will describe are general algorithms whose functioning de-pends on knowledge of the particular target class for which they are being used. For suchan algorithm A, we will use MA(C) to denote maxf2CMA(f) when A is told that thetarget class is C. 6

terminology of Mitchell (1982), the consistent functions form the cur-rent version space of the algorithm. Initially the list contains all of thefunctions in the class. To respond to a new instance, the algorithmcomputes the values of all consistent functions at the new instance, andmakes the prediction that agrees with the majority (or either possibilityin case of a tie). Following each trial, the algorithm updates the list ofconsistent functions.We will now give a second description of the halving algorithm tointroduce notation that we will use later. Given a target class C anda point x in the associated instance space X , let �0(C; x) denote thesubset of C containing those functions that are 0 at x, and let �1(C; x)denote those functions in C that are 1 at x.The halving algorithm maintains a variable CONSIST whose valueis a set containing all functions in C that are consistent with all past in-stances. Initially CONSIST = C. When the halving algorithm receivesan instance, it determines the sets �0(CONSIST; x) and �1(CONSIST; x).If j�1(CONSIST; x)j > j�0(CONSIST; x)j then the algorithm predicts1; otherwise it predicts 0. When the algorithm receives the reinforce-ment, it sets CONSIST accordingly: if the correct response to x is 0then it sets CONSIST to �0(CONSIST; x); otherwise it sets CONSISTto �1(CONSIST; x). Let MHALV ING(C) denote the maximum numberof mistakes that the algorithm will make when it is run for the targetclass C (i.e., its initial list of functions consists of C) and the targetfunction in fact comes from C.Theorem 1 For any non-empty target class C, MHALV ING(C) �log2 jCj.Proof: Since there are only two possible predictions, the learner willalways be able to choose a prediction agreed to by at least half of thecurrent list of consistent functions. Whenever a mistake occurs, thosefunctions that agree with the prediction of the learner will be eliminatedfrom the list of consistent functions; these functions constitute at leasthalf of the list. Thus at each mistake the size of the list will be dividedby at least two. Since we have assumed that the target function is inthe initial class of functions, there will always be at least one consistentfunction. Thus the method can make at most log2 jCj mistakes.The theorem above also holds for a modi�ed version of the halvingalgorithm in which CONSIST is only changed following trials in whichmistakes occur. The same proof applies in this case. The halvingalgorithm immediately gives us the following theorem:Theorem 2 For any �nite target class C, opt(C) � log2 jCj.Example 1 Note that for some classes of functions this bound is nottight. For example, for x 2 f0; 1gn let gx : f0; 1gn ! f0; 1g be the7

function that is 1 at x and 0 elsewhere. Then one can easily verify thatthe halving algorithm applied to the class of functions fgxgx2f0;1gn willmake at most one mistake.Now we will study opt(C) more closely. To do this we need thefollowing de�nitions.De�nition 2 A mistake tree for a target class C over an instance spaceX is a binary tree each of whose nodes is a non-empty subset of C andeach of whose internal nodes is labeled with a point ofX , which satis�esthe following:(1) The root of the tree is C.(2) Given any internal node C 0 labeled with x, the left child of C 0, ifpresent, is �0(C 0; x), and the right child, if present, is �1(C 0; x).For example, Figure 1 shows the mistake tree for C when X = f0; 1g5and C consists of the functions fi(x1; : : : ; x5) = xi, for i = 1; : : : ; 5.A complete k-mistake tree is a mistake tree that is a complete binarytree of height k. We de�ne the height of a tree to be the length inedges of the longest path from the root. The tree above is a complete2-mistake tree. These trees provide a way to characterize the numberof mistakes made by an optimal learning algorithm. We will presentan optimal algorithm, and then discuss the number of mistakes that itmakes.For any non-empty �nite target class C, let K(C) equal the largestinteger k such that there exists a complete k-mistake tree for C. Thede�nition of mistake trees guarantees a �nite upper bound to k. LetK(;) = �1.Algorithm 2 (standard optimal algorithm)The standard optimal algorithm is similar to the halving algorithm.It maintains the variable CONSIST in the same manner, and like thehalving algorithm examines �0(CONSIST; x) and �1(CONSIST ; x) todetermine its prediction. The only di�erence from the halving al-gorithm lies in the rule it uses to choose its prediction. Instead ofpredicting according to which of these sets of functions is larger, it com-paresK(�0(CONSIST ; x)) withK(�1(CONSIST; x)). IfK(�1(CONSIST; x)) >K(�0(CONSIST; x)) then the algorithm responds 1; otherwise it re-sponds 0. Thus whenever a mistake occurs, the remaining consistentfunctions have the smaller maximal complete mistake tree.Theorem 3 Let X be any instance space. Let SOA denote the stand-ard optimal algorithm de�ned above, and let C be any �nite class offunctions with domain X and range f0; 1g. Thenopt(C) =MSOA(C) = K(C):8

ff1; f2; f3; f4; f5glabel (0,0,1,1,1)
ff1; f2glabel (0,1,0,0,0) ff3; f4; f5glabel (0,0,0,1,1)

ff1g ff2g ff3g ff4; f5g
����� @@@@@������ AAAAAA ������ AAAAAAFigure 1. A complete 2-mistake tree.We will prove this theorem using the following two lemmas:Lemma 1 For any target class C,opt(C) � K(C):Proof: This follows trivially from the de�nition if C is empty. As-sume C is non-empty, and let k = K(C). Saying that opt(C) � k isequivalent to saying that for any deterministic learning algorithm A,there exists a function f 2 C and a sequence of instances such thatA makes at least k mistakes when presented with that sequence of in-stances. Given an algorithm A, we will show how an adversary canchoose a function and a sequence of instances such that A makes atleast k mistakes. The adversary keeps track of a current mistake tree.Initially this is a complete k mistake tree for C. If k = 0, the lemmafollows trivially. Otherwise, the �rst instance chosen by the adversaryis the label of the root of the tree. Whatever the algorithm predicts,the adversary tells the algorithm that its prediction is wrong. Thisresponse of the adversary eliminates some functions as possible tar-get functions. The remaining candidate functions are either the class�0(C; x) or the class �1(C; x), depending on the algorithm's predictionand the adversary's response to it. One of the two subtrees of the rootof the adversary's current mistake tree is a complete k�1 mistake tree9

for the remaining candidate functions. The adversary sets its currentmistake tree to that subtree. It chooses the next instance to be thelabel of the root of the new current tree. The adversary continues inthis manner, forcing the algorithm to be wrong at each instance. Afterj mistakes, the adversary's current tree is a complete k � j mistaketree for the remaining candidate target functions. As long as j < k, theroot of the current tree has two children corresponding to non-emptysubclasses of C; thus the adversary can choose a point (the label of theroot) at which it can force the algorithm to make a mistake. Whenj = k, k mistakes have been made, as desired. The target functionchosen by the adversary can be any candidate remaining after the lastmistake was made.Lemma 2 Let C be a �nite non-empty target class. Suppose that SOAis run to learn some function in C and that the sequence of instancesit receives is x1; : : : ; xt. Consider the variable CONSIST maintainedby SOA. Let CONSISTi denote the value of CONSIST at the start oftrial i. For any k � 0 and i in f1; : : : ; tg, if K(CONSISTi) = k, thenSOA will make at most k mistakes during trials i; : : : ; t.Proof: We prove this by induction on k, taking k = 0 to be the basecase. By the construction of SOA, the target function will always bein CONSISTi. If K(CONSISTi) = 0 then CONSISTi can contain onlythe target function. (If there are two functions in CONSISTi, then anyinstance on which they di�er is the label of the root of a complete 1-mistake tree for CONSISTi.) The de�nition K(;) = �1 ensures thatSOA will always respond correctly when CONSISTi contains only thetarget function. This proves the base case of the induction.Now we will prove the lemma for arbitrary k > 0, assuming that itholds for k�1. If SOA makes no mistakes during trials i; : : : ; t�1 thenwe are done. Otherwise, let j be the number of the �rst trial amongtrials i; : : : ; t� 1 at which SOA makes a mistake. If there are completek-mistake trees for both �0(CONSISTj ; xj) and �1(CONSISTj ; xj),then we can combine them into a complete k + 1 mistake tree forCONSISTj ; we add a root node labeled with xj . Since CONSISTj �CONSISTi it is easy to transform this into a complete k + 1-mistaketree for CONSISTi. But we have assumed that there does not exista complete k + 1-mistake tree for CONSISTi. Thus at least one ofK(�0(CONSISTj ; xj)) and K(�1(CONSISTj ; xj)) must be less thank. Since the response of SOA corresponded to the larger of these twovalues for K, and since SOA was wrong, CONSISTj+1 will have theproperty thatK(CONSISTj+1) < k. By the induction hypothesis, SOAwill make at most k � 1 mistakes during trials j + 1; : : : ; t. This givesthe desired result. 10

Table 1. Values of nine functions in Example 2.f1 f2 f3 f4 f5 f6 f7 f8 f9a1 1 0 0 0 0 0 0 0 0a2 0 1 0 0 0 0 0 0 0a3 0 0 1 0 0 0 0 0 0a4 0 0 0 1 0 0 0 0 0a5 0 0 0 0 1 0 0 0 0a6 0 0 0 0 0 1 1 1 1a7 0 0 0 0 0 0 0 1 1a8 0 0 0 0 0 0 1 0 1Proof of Theorem 3: If we set k = K(C) and i = 1 in Lemma 2we get MSOA(C) � K(C). Lemma 1 states K(C) � opt(C). From thede�nition of opt(C) we have opt(C) �MSOA(C). The theorem follows.One of the consequences of this theorem is that we could use optinstead of K in the description of SOA and obtain the same algorithm.Note that Example 1 shows that there are arbitrarily large targetclasses C for which opt(C) = 1. Using this, one can construct a targetclass C for which there is some point x such thatj�0(C; x)j > j�1(C; x)jbut opt(�0(C; x)) < opt(�1(C; x)):For such a target class, if the point x is the �rst instance, then thestandard optimal algorithm and the halving algorithm will make di�er-ent predictions for x. Let us consider an example of such a target classfor which the halving algorithm is not optimal.Example 2 Let the instance spaceX be an eight element set fa1; : : : ; a8g.Let the target class C consist of nine functions f1; : : : ; f9, with valuesshown in Table 1. If the �rst three instances received by the halvingalgorithm are a6; a7; a8 in that order, then there is some target functionfor which the halving algorithm will make three mistakes. (If we usethe version of the halving algorithm that chooses 0 in case of a tie,then the halving algorithm will make three mistakes for target func-tion f9.) On the other hand, there is no sequence of points and targetfunction for which SOA will make more than 2 mistakes. One can seethis by considering each point of the instance space in turn. For everyx 2 X either opt(�0(C; x)) � 1 or opt(�1(C; x)) � 1. Thus no mat-ter on which instance SOA makes its �rst mistake, its prediction will11

have been chosen so that the remaining consistent functions have anoptimal mistake bound of at most one. Hence the halving algorithm isnot optimal for this target class.Now we give a lower bound for opt(C) in terms of the Vapnik-Chervonenkis (Vapnik & Chervonenkis, 1971) dimension of C, whichis a combinatorial parameter that has proven useful in other studies oflearning (Vapnik, 1982; Blumer et al., 1987a; Haussler, Littlestone, &Warmuth, 1987).2 To de�ne the Vapnik-Chervonenkis dimension, weuse the notion of a shattered set.De�nition 3 A set S � X is shattered by a target class C if for everyU � S there exists a function f 2 C such that f is 1 on U and 0 onS � U .De�nition 4 TheVapnik-Chervonenkis dimension of a non-empty tar-get class C is the cardinality of the largest set that is shattered by C.We will denote this V Cdim(C). We will de�ne V Cdim(;) = �1.Theorem 4 For any target class C, V Cdim(C) � opt(C).Proof: Let k = V Cdim(C). Choose any set fv1; : : : ; vkg � X thatis shattered by C. Then we can construct a complete k-mistake treefor C with all internal nodes at depth j labeled with vj+1 for j =0; 1; : : : ; k�1. The nodes are chosen to be subclasses of C as required inthe de�nition of a mistake tree. These subclasses will be all non-empty(as required by the de�nition) by virtue of the fact that fv1; : : : ; vkg isshattered by C.The Vapnik-Chervonenkis dimension will prove to be a useful lowerbound on opt(C) for concept classes that we will consider in later sec-tions of the paper. However, there are also concept classes for whichthe Vapnik-Chervonenkis dimension is a very weak lower bound. Infact, as the following example shows, opt(C) can be arbitrarily largefor classes for which V Cdim(C) = 1.Example 3 For n > 0, take X = f1; : : : ; 2n � 1g. For each j 2f1; : : : ; 2ng let fj : X ! f0; 1g be the function such that fj(x) = 1 ifand only if x < j. Let C = ffj : 1 � j � 2ng. Then V Cdim(C) = 1but opt(C) = n. To see this, �rst note that for any f 2 C if f(x) = 1then for all y < x, f(y) = 1. Thus no set of size 2 is shattered andV Cdim(C) = 1. Also, by Theorem 2, opt(C) � log2 jCj = n. To seethat opt(C) � n we can construct a complete n-mistake tree. Labelthe root with the point 2n�1. We have �0(C; 2n�1) = ff1; : : : ; f2n�1gand �1(C; 2n�1) = ff2n�1+1; : : : ; f2ng. Each of these two subclasses is2In Vapnik (1982), the Vapnik-Chervonenkis dimension is called the capacity.12

similar to the original class but half as large. It is easy to see thatpoints can be found to be the labels of the children of the root that willsplit each of the subclasses exactly in two. This line of reasoning canbe formalized to yield an inductive construction of the mistake tree.4 General transformationsThere is a close relationship between learning algorithms of the typethat we have been considering and those that exactly identify a targetfunction using a bounded number of equivalence queries, as describedby Angluin (1987). An equivalence query is a request by an algorithmthat asks if the target function matches some function described in thequery. Whenever an algorithm receives a negative answer to an equi-valence query, it also receives a counterexample, i.e., a point at whichthe target function and the proposed function disagree. The equival-ence query algorithms that we consider here receive no examples asinput other than the counterexamples to the queries. In this section,we will use the term \query algorithm" to refer to an algorithm thatlearns using equivalence queries, and the terms \on-line learning al-gorithm", \mistake-bounded algorithm", and \algorithm for learningfrom examples" to refer to algorithms of the type discussed elsewherein this paper.To describe the relationship between equivalence query algorithmsand our model, we must de�ne the notion of the current hypothesis of analgorithm for on-line learning from examples. The current hypothesis isde�ned initially and between trials, and is a function from the instancespace to f0; 1g. Its value at any instance x is de�ned to be the responsethat the algorithm would give at the next trial if the instance receivedin the next trial were x. This is well-de�ned for any deterministicalgorithm. If we copy the state of an algorithm at the conclusion of atrial, then we can use the copy of the state to determine (by simulatingthe algorithm) what prediction the algorithm would make for any newinstance, without sending that instance to the running version of thealgorithm. Thus the state can be considered a representation of thecurrent hypothesis of the algorithm. (Often a portion of the state willsu�ce.) Using this representation to represent the functions appearingin queries, an algorithm that learns from examples can be transformedinto a query algorithm. We will show that the number of queries neededwill be at most one more than the number of mistakes that the learning-from-examples algorithm would make.33Note that for most of Angluin's results, the queries are restricted to use only functionsfrom the target class in question. For the conversion here, the functions used in the queriesmust be allowed to come from the class of functions that the original algorithm uses for13

The inverse transformation is also possible: a query algorithm canbe transformed into an algorithm that learns from examples makinga bounded number of mistakes. The e�ciency of the transformed al-gorithm will depend on the di�culty of evaluating the functions givenin the queries. The number of mistakes made by the transformed al-gorithm is bounded by the number of queries used by the query al-gorithm. We now give the details of these transformations.Algorithm transformation 1 Given a mistake-bounded learning al-gorithm A, this transformation yields a query algorithm B for the sametarget class. The �rst query of the derived algorithm B is the initialhypothesis of algorithm A. Algorithm B waits for a response to thisquery and then repeats the following for the �rst response and the re-sponse to each subsequent query: if the response indicates that thequery speci�ed the correct target function, then algorithm B halts andreports the correct target function; otherwise, the response to the latestquery includes a counterexample. The derived algorithm gives this in-stance to algorithm A. After receiving A's prediction, it tells A thatthe prediction was incorrect. (Algorithm B knows that A will be wronghere, since the last query was just the current hypothesis of A, and byde�nition the current hypothesis tells how A will respond to the nextinstance.) Algorithm B takes the new hypothesis of algorithm A anduses it as the next query, continuing in this fashion until it determinesthe correct target function.Since every query after the �rst results from a mistake of A, wehave the following theorem:Theorem 5 The number of queries needed by the derived algorithm toexactly identify target function f is bounded by MA(f) + 1.Algorithm transformation 2 Now suppose we are given a query al-gorithm A that achieves exact identi�cation of every function in sometarget class C with a bounded number of queries. This transformationyields a mistake-bounded learning algorithm B for the same targetclass. The initial hypothesis of algorithm B is the hypothesis outputby the query algorithm as its initial query. Algorithm B uses this hy-pothesis to respond to all instances that are received until it is told thatit has made a mistake. Until the �rst mistake, algorithm A receives noresponse to its �rst query. At the time of the �rst mistake, algorithmits hypotheses. Also note that with this transformation, the functions used in the querieswill not necessarily be given a compact symbolic representation. However, if the queryalgorithm is derived from a computationally e�cient algorithm for on-line learning fromexamples, then the query functions will be represented in a form that can be e�cientlyevaluated. 14

B gives algorithm A a response to its query: it tells A that its hy-pothesis was wrong, and reports that the instance at which a mistakewas made is a counterexample. Algorithm B now waits to make anyfurther predictions until A either makes another query or halts and re-ports the correct target function. Since A achieves exact identi�cation,one of these events will occur. The hypothesis given in the new query(or the reported target function) becomes the new current hypothesisof algorithm B. The derived algorithm B proceeds in this mannerinde�nitely.The next theorem follows immediately.Theorem 6 For any target function f 2 C, the number of mistakesmade by the derived algorithm in learning f is bounded by the numberof queries needed by algorithm A to exactly identify f .One can also convert a mistake-bounded algorithm into an algorithmthat learns e�ectively in the probabilistic model introduced by Valiant(1984) and described by Blumer et al. (1987a, 1987b). Angluin (1987)refers to this model as pac-learning, where pac stands for \probablyapproximately correct." One way to perform the conversion essentiallyfollows a method discussed by Kearns, Li, Pitt, and Valiant (1987b) forusing failure bounds to derive probabilistic learning results. Alternat-ively, one can use an indirect route: one can convert a mistake-boundedalgorithm into an algorithm for exact identi�cation using equivalencequeries, and then use a conversion described by Angluin (1987) to ob-tain an algorithm for the probabilistic setting.Other general algorithm transformations are possible. Sometimes itis useful to have an algorithm that changes its hypothesis only when amistake occurs; Haussler (1985) has referred to such methods as con-servative. One can transform a mistake-bounded algorithm into a con-servative algorithm with the same mistake bound. Haussler (1985) hasreferred to such methods as failure-bounded. One way to convert amistake-bounded algorithm to a conservative algorithm is to use theabove transformations to convert it �rst to an equivalence query al-gorithm and thence back to a mistake-bounded algorithm. The mistakebound increases by one if the above theorems about the transformationsare applied as they stand. With more careful analysis of the doubleconversion, the increase disappears. The conversion to a conservativealgorithm is also straightforward to perform directly.5 The linear-threshold algorithmNow we describe our main algorithm, �rst describing the classes oftarget functions. We will consider linearly-separable Boolean functions,15

which are those functions that can be computed by a one-layer linear-threshold network such as a perceptron. A function from f0; 1gn tof0; 1g is said to be linearly separable if there is a hyperplane in Rnseparating the points on which the function is 1 from the points onwhich it is 0. Monotone disjunctions constitute one class of linearly-separable functions.De�nition 5 A monotone disjunction is a disjunction in which noliteral appears negated, that is, a function of the formf(x1; : : : ; xn) = xi1 _ � � � _ xik :The hyperplane given by xi1+� � �+xik = 1=2 is a separating hyperplanefor f(x1; : : : ; xn) = xi1 _ � � � _ xik . We will present two variants ofour algorithm. The �rst variant, which we now present, is specializedfor learning monotone disjunctions. We will later describe a simpletransformation to remove the monotone restriction.Algorithm 3 (Winnow1)We call this algorithm \Winnow" because it has been designedfor e�ciency in separating relevant from irrelevant attributes. Wewill present the algorithm as a linear-threshold algorithm. The in-stance space is X = f0; 1gn. The algorithm maintains non-negativereal-valued weights w1; : : : ; wn, each having 1 as its initial value. Thealgorithm also makes use of a real number �, which we call the threshold.When the learner receives an instance (x1; : : : ; xn), the learner respondsas follows:� If nPi=1wixi > �, then it predicts 1;� If nPi=1wixi � �, then it predicts 0.The choice of prediction when nPi=1wixi = � is not critical for our results.The weights are changed only if the learner makes a mistake, andthen only the weights corresponding to non-zero xi are changed. Theamount by which the weights are changed depends on a �xed parameter� > 1. Good bounds are obtained if � is set to n=2 and � is set to 2.We will say more about the values of � and � later. Table 2 describesthe changes made to the weights in response to di�erent combinationsof prediction and reinforcement. The threshold is left �xed.Note in Table 2 that we have given each type of update action aname; each mistake corresponds to a single promotion step or to asingle elimination step. The space needed (without counting bits perweight) and the sequential time needed per trial are both clearly linearin n. Note that the non-zero weights are powers of �. We will prove16

Table 2. Winnow1's response to mistakes.learner's correct update updateprediction response action name1 0 wi := 0 if xi = 1 eliminationwi unchanged if xi = 0 step0 1 wi := � � wi if xi = 1 promotionwi unchanged if xi = 0 stepthat the weights are at most ��. Thus if the logarithms (base �) ofthe weights are stored, only O(log2 log� �) bits per weight are needed.The running time needed to calculate predictions and changes to theweights could be reduced greatly by parallel implementation, such aswith an appropriately constructed neural net. For a mistake bound wegive the following theorem.Theorem 7 Suppose that the target function is a k-literal monotonedisjunction given by f(x1; : : : ; xn) = xi1 _ � � � _ xik . If Winnow1 isrun with � > 1 and � � 1=�, then for any sequence of instances thetotal number of mistakes will be bounded by �k(log� � + 1) + n� .For example, if � = n and � = 2 then the mistake bound is2k(log2 n+1)+1. If we set � = n� , the bound simpli�es to �k log� n+�.For � = 2 this gives a bound of 2k log2 n+2. The dominating �rst termis minimized for � = e; the bound then becomes elog2 ek log2 n + e <1:885k log2 n+ e.We will prove this theorem by �nding bounds on the number ofpromotion and elimination steps that occur. First we give three lemmasused in the proof.Let u be the number of promotion steps that have occurred by theend of some sequence of trials and let v be the number of eliminationsteps that have occurred by the end of the same sequence of trials.Lemma 3 v � n� + (�� 1)u.Proof: Consider how the sum Pni=1 wi changes over time. Initiallythe sum is n; promotion and elimination steps cause it to change. Eachpromotion steps increases this sum by at most (�� 1)�, since when apromotion step occurs we have Pijxi=1 wi � �. Each elimination stepdecreases Pni=1 wi by at least �. Since the sum is never negative wehave 0 � nXi=1 wi � n+ �(�� 1)u� �v;17

giving the desired result.Lemma 4 For all i, wi � ��.Proof: Since � � 1=�, the weights are initially less than or equal to��. For any j, the value of wj is only increased during a trial in whichxj = 1 and Pni wixi � �. These conditions can only occur together ifwj � � immediately prior to the promotion. Thus wj � �� after thepromotion.Lemma 5 After u promotion steps and an arbitrary number of elim-ination steps, there exists some i for which log� wi � u=k.Proof: Let R = fi1; : : : ; ikg. We look at how the product Qi2R wi ischanged by elimination and promotion steps. Note that f(x1; : : : ; xn) =0 if and only if xi = 0 for all i 2 R. Elimination steps occur only whenf(x1; : : : ; xn) = 0; promotion steps occur only when f(x1; : : : ; xn) = 1.Thus Qi2R wi is unchanged by elimination steps and is increased bya factor of at least � by each promotion step. Initially Qi2R wi = 1.Thus after u promotion steps Qi2R wi � �u, givingPi2R log� wi � u.Since jRj = k, for some i 2 R we have log� wi � u=k, as desired.Note that only the last of these lemmas depends on the form of thetarget function and it is only there that k appears.Proof of Theorem 7: The total number of mistakes made duringa run of the algorithm is equal to the number of promotion steps, u,plus the number of elimination steps, v. We bound u using the last twolemmas and then use the �rst lemma to bound v. Combining lemmas4 and 5 we see that u=k � log� wi � log� � + 1;or u � k(log� � + 1):Lemma 3 now gives v � n� + (�� 1)k(log� � + 1):Adding the bounds on u and v leads to the desired bound on the totalnumber of mistakes.Note that the above algorithm does not depend on k. Thus thealgorithm can learn the entire target class of monotone disjunctionswithout modi�cation. The mistake bound depends on the number ofliterals in the actual target concept. Now for 1 � k � n, let ~Ckdenote the class of k-literal monotone disjunctions, and let Ck denote18

the class of all those monotone disjunctions that have at most k-literals.Suppose one wants to specialize the algorithm to learn the target classCk0 e�ciently for a particular k0. If one chooses � = n�k0 , then themistake bound becomes�k log� nk0 + �k0 � �k0(1 + log� nk0)when the target function is a k-literal monotone disjunction in Ck0 . For� = 2 this gives a bound of 2k0(1 + log2 nk0). For � = e we obtain thebound k0(e+ 1:885 log2 nk0).We now give a lower bound on the number of mistakes needed tolearn ~Ck and Ck.Theorem 8 (lower bound) For 1 � k � n, opt(Ck) � opt(~Ck) �kblog2 nk c. For n > 1 we also have opt(Ck) � k8 (1 + log2 nk).The second form gives a formula directly comparable to the upperbound above. When the above algorithm is specialized for a partic-ular Ck and when n > 1, the algorithm is within a constant factor ofbeing optimal.Proof: Since ~Ck � Ck , it is clear that opt(Ck) � opt(~Ck). By The-orem 4, any algorithm to learn a concept class will have a mistake boundat least equal to the Vapnik-Chervonenkis dimension of the conceptclass. In the following lemma we show that the Vapnik-Chervonenkisdimension of ~Ck is bounded below by kblog2 nk c. This gives the �rstpart of the theorem. We will split the derivation of the second formulafrom the �rst into two cases, depending on whether or not k � n2 . Ifk � n2 then log2 nk � 1. Thuskblog2 nk c � k3 (2blog2 nk c+log2 nk�1) � k3 (2+log2 nk�1) � k8 (1+log2 nk)as desired. If n � k > n2 , then opt(Ck) � opt(~Cbn2 c) since ~Cbn2 c � Ck.(Here we use the assumption that n > 1.) We haveopt(~Cbn2 c) � bn2 cblog2 nbn2 cc � bn2 cblog2 2c = bn2 c � n2 � 12 :We also have k8 (1 + log2 nk) � n8 (1 + log2 2) = n4 :For n � 2, this is less than or equal to n2 � 12 , giving the desired result.19

We will prove a more general lemma than is needed here, since it willgive us results that will be useful later. Note that k-literal monotoneconjunctions are just 1-term monotone k-DNF formulas. Also l-literalmonotone disjunctions are l-term monotone 1-DNF formulas.Lemma 6 For 1 � k � n and 1 � l � �nk�, let C be the class offunctions expressible as l-term monotone k-DNF formulas and let mbe any integer, k � m � n such that �mk � � l. Then V Cdim(C) �klblog2 nmc.Note in particular that if l is 1 then we can take m to be k and if k is1 then we can take m to be l.Proof: Let r = blog2 nmc. If r = 0, then the theorem follows trivially,since C is non-empty. Assume r > 0. Let s = 2r. Note that ms �n. We will construct a set S � f0; 1gn containing klr points that isshattered by C. To describe the construction we will need to referto an enumeration of the �mk � ways to choose k distinct integers fromthe set f1; : : : ;mg. Let f(�j1; : : : ; �jk)g, where j runs from 1 through�mk �, be such an enumeration. (The values of the �ji are the chosenintegers.) We will construct S as the union of sets Sji for i = 1; : : : ; kand j = 1; : : : ; l. Each set Sji contains r points and each point hasn coordinates. Split these coordinates into groups so that there are mdisjoint groups of s coordinates each. There may be some coordinatesleft over; we will not make them a part of any group. Number the groupsfrom 1 through m. Fix attention on some i and j. Let all coordinatesof each point in Sji be 0 except for coordinates in the groups numbered�j1 through �jk . Let the coordinates in groups �j1 through �jk be 1except for those in group �ji. The coordinates in group �ji are used todistinguish the points within set Sji. Set the coordinates in this groupto 0 or 1 in such a manner that for each subset V � Sji, there is acorresponding coordinate in group �ji that is 1 at points in V and 0 atpoints in Sji�V . This is possible since there are 2r subsets of Sji andthere are 2r coordinates in the group. For example, suppose n = 24,k = 2, and l = 3. If we take m = 3, then we get r = 3. Picking(1; 2); (1; 3); (2; 3) as the enumeration of the three ways to choose twointegers from f1; 2; 3g, we can take the sets Sji as shown in Table 3.Now we show how to construct an l-term k-DNF formula that is 1exactly on some arbitrary subset U � S. Each of the l terms of thisformula will have length exactly k, and no literal will be negated. LetUji = U \Sji. We will express the formula in terms of n variables, withone variable corresponding to each coordinate. This gives m groups ofvariables, corresponding to the m groups of coordinates. The jth termwill contain one variable from each of the groups �j1; : : : ; �jk. Wechoose the ith variable in the jth term from group �ji so that it is 1 at20

Table 3. An example of the sets Sji.S11 = f(0;0;0;0;1;1;1;1; 1;1;1;1;1;1;1;1; 0;0;0;0;0;0;0;0);(0;0;1;1;0;0;1;1; 1;1;1;1;1;1;1;1; 0;0;0;0;0;0;0;0);(0;1;0;1;0;1;0;1; 1;1;1;1;1;1;1;1; 0;0;0;0;0;0;0;0)gS12 = f(1;1;1;1;1;1;1;1; 0;0;0;0;1;1;1;1; 0;0;0;0;0;0;0;0);(1;1;1;1;1;1;1;1; 0;0;1;1;0;0;1;1; 0;0;0;0;0;0;0;0);(1;1;1;1;1;1;1;1; 0;1;0;1;0;1;0;1; 0;0;0;0;0;0;0;0)gS21 = f(0;0;0;0;1;1;1;1; 0;0;0;0;0;0;0;0; 1;1;1;1;1;1;1;1);(0;0;1;1;0;0;1;1; 0;0;0;0;0;0;0;0; 1;1;1;1;1;1;1;1);(0;1;0;1;0;1;0;1; 0;0;0;0;0;0;0;0; 1;1;1;1;1;1;1;1)gS22 = f(1;1;1;1;1;1;1;1; 0;0;0;0;0;0;0;0; 0;0;0;0;1;1;1;1);(1;1;1;1;1;1;1;1; 0;0;0;0;0;0;0;0; 0;0;1;1;0;0;1;1);(1;1;1;1;1;1;1;1; 0;0;0;0;0;0;0;0; 0;1;0;1;0;1;0;1)gS31 = f(0;0;0;0;0;0;0;0; 0;0;0;0;1;1;1;1; 1;1;1;1;1;1;1;1);(0;0;0;0;0;0;0;0; 0;0;1;1;0;0;1;1; 1;1;1;1;1;1;1;1);(0;0;0;0;0;0;0;0; 0;1;0;1;0;1;0;1; 1;1;1;1;1;1;1;1)gS32 = f(0;0;0;0;0;0;0;0; 1;1;1;1;1;1;1;1; 0;0;0;0;1;1;1;1);(0;0;0;0;0;0;0;0; 1;1;1;1;1;1;1;1; 0;0;1;1;0;0;1;1);(0;0;0;0;0;0;0;0; 1;1;1;1;1;1;1;1; 0;1;0;1;0;1;0;1)gall of the points in Uji and 0 at points in Sji � Uji. This is possibledue to the way the sets Sji were constructed.To see that this formula is 1 on U and 0 on S�U , consider any pointx 2 S. This point will be in Sji for some i and j. The coordinates ofthe point will be 0 except in groups �j1; : : : ; �jk . Thus every term butthe jth will contain at least one variable that is 0 at x. Therefore theformula will be 1 if and only if the jth term is 1. The coordinates of xwill be 1 in groups �j1; : : : ; �jk, except possibly in group �ji. Hence allvariables in the jth term will be 1, except possibly for the ith variable.Therefore the value of the formula at x will match the value of the ithvariable of the jth term. This variable will be 1 if x 2 Uji and 0 ifx 2 Sji � Uji, as desired.The algorithm can be modi�ed to work on larger classes of Booleanfunctions. For any instance space X � f0; 1gn, and for any � satisfying0 < � � 1 let F (X; �) be the class of functions from X to f0; 1g withthe following property: for each f 2 F (X; �) there exist �1; : : : ; �n � 0such that for all (x1; : : : ; xn) 2 XnXi=1 �ixi � 1 if f(x1; : : : ; xn) = 1 (1)21

Table 4. Winnow2's response to mistakes.learner's correct update updateprediction response action name1 0 wi := wi=� if xi = 1 demotionwi unchanged if xi = 0 step0 1 wi := � � wi if xi = 1 promotionwi unchanged if xi = 0 stepand nXi=1 �ixi � 1� � if f(x1; : : : ; xn) = 0: (2)In other words, the inverse images of 0 and 1 are linearly separable witha minimum separation that depends on �. We will present a secondvariant of Winnow that can handle target classes of this form.The mistake bound that we derive will be practical only for thoselinearly-separable functions for which � is su�ciently large. For ex-ample, these include the Boolean r-of-k threshold functions. Let X =f0; 1gn. An r-of-k threshold function f(x1; : : : ; xn) is de�ned by select-ing a set of k signi�cant variables. The value of f is 1 whenever at leastr of these k variables are 1. If the k selected variables are xi1 ; : : : ; xik ,then f is 1 exactly when xi1 + � � �+ xik � r. Equivalently, f is 1 when1r xi1 + � � �+ 1r xik � 1:The value of f is 0 when no more than r � 1 of the selected variablesare 1. In this case 1r xi1 + � � �+ 1r xik � 1� 1r :Thus the r-of-k threshold functions are contained in F (f0; 1gn; 1r).There exist other classes of linearly-separable Boolean functions forwhich 1� grows exponentially with n when the instance space is f0; 1gn(Muroga, 1971; Hampson & Volper, 1986). One example of a set offunctions with exponentially small � consists off(x1; : : : ; xn) = x1 _ (x2 ^ (x3 _ (x4 ^ � � �xn)) � � �)as n varies. For such functions, the mistake bound that we will derivegrows exponentially with n. We now give a description of the secondvariant of Winnow.Algorithm 4 (Winnow2) 22

The only change to Winnow1 involves the amount by which theweights are changed when a mistake is made. In a promotion step, asbefore, we multiply the weights by a �xed � > 1. But now, insteadof setting weights to zero in an elimination step, we divide them by �.(We now call this a demotion step.) We must now be more careful inour choice of �. For the mistake bound that we derive below, we use� = 1+ �=2 for learning a target function in F (X; �).Table 4 describes Winnow2's responses to di�erent types of mis-takes. Space and time requirements for Winnow2 are similar to thoseforWinnow1. However, more bits will be needed to store each weight,perhaps as many as the logarithm of the mistake bound. The followingtheorem gives a mistake bound for Winnow2.Theorem 9 For 0 < � � 1, if the target function is in the classF (X; �) for X � f0; 1gn, if �1; : : : ; �n have been chosen so that thetarget function satis�es the inequalities (1) and (2), and if Algorithm4 is run with � = 1+ �2 and � � 1 and the algorithm receives instancesfrom X, then the number of mistakes will be bounded by8�2 n� + (5� + 14 ln ��2) nXi=1 �i:Before proving this theorem, we will state and prove three lemmasanalogous to the lemmas used to prove Theorem 7. We de�ne u and vin the same manner as for those lemmas. The current lemmas do notdepend on the particular choice of � given in Theorem 9.Lemma 7 v � ��� 1 n� + �u:Proof: We will examine how the weights are changed by promotionand demotion steps. We will use wi;bef to denote weights at the begin-ning of a trial in which a promotion or demotion occurs, and wi;aft todenote the weights resulting from the promotion or demotion. For apromotion step, we can write the update rule aswi;aft = wi;bef + (�� 1)xiwi;bef for i = 1; : : : ; n:Since a promotion step only occurs when Pni=1 wi;befxi � �, we havenXi=1 wi;aft � nXi=1 wi;bef + (�� 1)�for a promotion step. For a demotion step, we havewi;aft = wi;bef � (1� 1�)xiwi;bef for i = 1; : : : ; n:23

A demotion step only occurs when Pni=1 wi;befxi > �. ThusnXi=1 wi;aft � nXi=1 wi;bef � (1� 1=�)�:Initially, the sum of the weights is n; hence after u promotions and vdemotions, nXi=1 wi � n+ u(�� 1)� � v(1� 1=�)�:Since the weights are never negative, we must have n+u(��1)��v(1�1=�)� � 0. Thus v(1 � 1=�) � n� + u(� � 1), giving v � ���1 n� + �u,as desired.Lemma 8 For all i, wi � ��.Proof: Since � � 1 and � > 1, the weights are initially less than orequal to ��. For any j, the value of wj is only increased during a trialin which xj = 1 and Pni wixi � �. These conditions can only occurtogether if wj � � immediately prior to the promotion. Thus wj � ��after the promotion.Lemma 9 After u promotion steps and v elimination steps, there ex-ists some i for which logwi � u� (1� �)vPni=1 �i log�:Proof: We will use the symbols wi;bef and wi;aft as in the proof ofLemma 7. This time we look at what happens to Pni=1 �i logwi. Wecan write the promotion update rule aswi;aft = �xiwi;bef :Taking the logarithm and multiplying by �i, we get�i logwi;aft = �i logwi;bef + �ixi log�:A promotion step only occurs whenPni=1 �ixi � 1. Thus, at a promo-tion step we havenXi=1 �i logwi;aft � nXi=1 �i logwi;bef + log�:At a demotion step we havewi;aft = ��xiwi;bef :24

Thus �i logwi;aft = �i logwi;bef � �ixi log�:For a demotion step to occur, we must havePni=1 �ixi � 1� �. Thus,at a demotion step we havenXi=1 �i logwi;aft � nXi=1 �i logwi;bef � (1� �) log�:Initially, Pni=1 �i logwi = 0. After u promotion steps and v demotionsteps, we have nXi=1 �i logwi � u log�� (1� �)v log�:Since the �i are non-negative, we get(maxi=1;:::;n logwi) nXi=1 �i � [u� (1� �)v] log�;and dividing by P�i gives the desired result.Proof of Theorem 9: From lemmas 8 and 9 we getu� (1� �)vPni=1 �i log� � log�+ log �:Since � > 1 and the �i are non-negative, we can rewrite this inequalityas u� (1� �)v � (1 + log �log�) nXi=1 �i:A second inequality involving u� (1� �)v results from using Lemma 7to eliminate v from the expression. This gives usu� (1� �)v � u� (1� �)(��� 1 n� + �u);and using the value for � given in the theorem, we getu�(1��)v � u�(1��)2 + �� n��(1��)(1+�2)u = (�2+�22)u� (1� �)(2 + �)� n� :Combining the two inequalities involving u� (1� �)v, we get(�2 + �22)u� (1� �)(2 + �)� n� � (1 + log �log(1 + �2)) nXi=1 �i;25

and therefore�2u � (1� �)(2 + �)� n� + (1 + log �log(1 + �2)) nXi=1 �i:From Taylor's formula with remainder, we getln(1 + �2) � �2 � (�=2)22 = �2(1� �4);and since � � 1 we get ln(1 + �2) � 3�=8:Thus, since we have assumed that � � 1,�2u � (1� �)(2 + �)� n� + (1 + ln �3�=8) nXi=1 �i:From Lemma 7, we have a bound on the total number of mistakes:u+ v � ��� 1 n� + (�+ 1)u:Thusu+ v � 2 + �� n� + 4 + �2 2� [(1� �)(2 + �)� n� + (1 + ln �3�=8) nXi=1 �i]= ((2 + �)� + (4 + �)(1� �)(2 + �)�2)n� + 4 + �� (1 + 8 ln �3�) nXi=1 �i:Using 0 < � � 1, we can simplify the upper bound to getu+ v � 8�2 n� + (5� + 14 ln ��2) nXi=1 �i;as desired.For the earlier example involving r-of-k threshold functions, we have� = 1r and Pni=1 �i = kr . Thus we get a mistake bound for r-of-kthreshold functions for � = 1+ 12r and � = n of 8r2+5k+14kr lnn. Wedo not know lower bounds for this concept class which are comparableto this upper bound. Note that 1-of-k threshold functions are just k-literal monotone disjunctions. Thus if � = 3=2, Winnow2 will learnmonotone disjunctions. The mistake bound is similar to the bound forWinnow1, though with larger constants.26

6 Transformations to other target classesVarious transformations are possible that let one apply the above al-gorithms to other classes of functions. One can think of these trans-formations as letting one derive a new learning algorithm from an exist-ing one. The transformations that we will describe here take the form ofmappings applied to the instances and predictions. If the instance spaceof the derived algorithm is X1 and that of the original algorithm is X2,then the transformations will take the form of functions Ti : X1 ! X2and Tp : f0; 1g ! f0; 1g. We will always take Tp to be either the iden-tity or the function that interchanges 0 and 1 (negation); thus Tp willbe invertible. When the derived algorithm receives an instance x 2 X1,it sends the instance Ti(x) to the original algorithm, which generatesthe prediction y. The derived algorithm then generates the predictionTp(y). Finally, to conclude the trial, when a reinforcement is received,the derived algorithm sends it to the original algorithm. (The rein-forcement is passed along without transformation since we view it as amessage saying \right" or \wrong" rather than as a message containingthe value of the correct response).Suppose we start with an original algorithmA and we want to derivean algorithm to learn some target class C. What we seek is a targetclass C0 that can be learned by A and mappings Ti and Tp such thatfor every g 2 C, there exists an f 2 C0 such that Tp � f � Ti = g. Wehave the following theorem.Theorem 10 Suppose we are given transformation Ti : X1 ! X2,invertible transformation Tp : f0; 1g ! f0; 1g, an original algorithmA that can accept instances from X2, and a derived algorithm B con-structed from these as described above. Suppose that we wish algorithmB to learn a target function g : X1 ! f0; 1g. If f : X2 ! f0; 1g is afunction that can be learned by A with a bounded number of mistakes,and if Tp � f � Ti = g, then algorithm B will learn g making at mostMA(f) mistakes.Proof: Let y be the prediction that the derived algorithm B makes inresponse to some instance x. For algorithm B to make this prediction,algorithm A must have made the prediction Tp�1(y) in response tothe instance Ti(x). We have Tp�1(y) = f(Ti(x)) if and only if y =g(x). Algorithm A is told that it has made a mistake when the derivedalgorithm makes a mistake. From the above we see that this happensexactly when the response of A to an instance Ti(x) is not equal tof(Ti(x)). This can happen at most MA(f) times.These transformations are similar in e�ect to the substitutions de-scribed by Kearns, Li, Pitts, and Valiant (1987a).27

Now we consider some examples of ways that these transformationscan be used to extend the classes of functions learnable usingWinnow1and Winnow2. For each example, we show that the transformationsatis�es the condition given in Theorem 10, namely that for any desiredtarget function g, there exists a function f in a target class that can belearned byWinnow1 orWinnow2 and for which Tp �f �Ti = g. Notethat in any case in which we use Winnow1, Winnow2 could also beused.Example 4 Learning arbitrary disjunctions.This is an example of one way to learn disjunctions that are not ne-cessarily monotone. Arbitrary disjunctions are also special cases of theclasses discussed in Examples 6 and 7 below. We will use Winnow1,but the learner does not send the �rst instances toWinnow1. Instead,the learner just responds 1 until the �rst mistake is made. This willbe an extra mistake, not counted in the bound for Winnow1. Thenthe learner starts using Winnow1, using transformations de�ned asfollows. Suppose (z1; : : : ; zn) is the �rst instance on which a mistake ismade. Then we let Ti : f0; 1gn ! f0; 1gn be the function given byTi(x1; : : : ; xn) = (x1 + z1; : : : ; xn + zn);where the addition is modulo 2. We let Tp be the identity.To construct the function f of Theorem 10, write the target functiong as g(x1; : : : ; xn) = xi1 _ � � � _ xil _ �xj1 _ � � � _ �xjmfor some l and m. Since g(z1; : : : ; zn) = 0 we must have zi1 = � � � =zil = 0 and zj1 = � � � = zjm = 1. Letf(x1; : : : ; xn) = xi1 _ � � � _ xil _ xj1 _ � � � _ xjm :Thenf�Ti(x1; : : : ; xn) = xi1_� � �_xil_(xj1+1)_� � �_(xjm+1) = g(x1; : : : ; xn);as desired. The mistake bound for learning non-monotone disjunctionswith this method is one more than the corresponding mistake boundfor monotone disjunctions.Example 5 Learning k-literal monotone conjunctions.We use Winnow1. Let Ti(x1; : : : ; xn) = (1 � x1; : : : ; 1 � xn) andTp(r) = 1 � r. If one thinks of 0 and 1 as false and true, then thetransformations Ti and Tp just negate all of their arguments. Thus ifthe target function g(x1; : : : ; xn) = xi1 � � �xik (i.e., the conjunction ofthese k variables) and if we let f(x1; : : : ; xn) = xi1 _ � � � _ xik , thenTp � f � Ti = g by de Morgan's law. Using Winnow1 with � = n2 and� = 2, the number of mistakes will be bounded by 2k log2 n+ 2.28

Example 6 Learning linearly-separable Boolean functions with weightsthat vary in sign.For X � f0; 1gn and 0 < � � 1, let G(X; �) be the class of functionsg : X ! f0; 1g for which there exist �1; : : : ; �n � 0 and ~�1; : : : ; ~�n � 0depending on g such that for all (x1; : : : ; xn) 2 X ,nXi=1��ixi + ~�i(1� xi)� � 1 if g(x1; : : : ; xn) = 1and nXi=1��ixi + ~�i(1� xi)� � 1� � if g(x1; : : : ; xn) = 0:We will �rst give a transformation to learn G(X; �), and then demon-strate that any linearly-separable Boolean function with domain X isin G(X; �) for some �. To learn functions in G(X; �), we useWinnow2and the transformation Ti : f0; 1gn ! f0; 1g2n given byTi(x1; : : : ; xn) = (x1; x2; : : : ; xn; 1� x1; 1� x2; : : : ; 1� xn):We let Tp be the identity. For any function g 2 G(X; �) we can �nda function f 2 F (Ti(X); �) for which Tp � f � Ti = g, satisfying thecondition of Theorem 10. To de�ne f , let �1; : : : ; �n and ~�1; : : : ; ~�n beas above. Let �i = �i for i = 1; : : : ; n, and let �i = ~�i�n for i =n+1; : : : ; 2n. Then the function f that is 1 if and only if P2ni=1 �ixi �1 is the desired function. The mistake bound of Theorem 9 applies,except that n must be replaced with 2n, and the sum Pni=1 �i withPni=1(�i + ~�i).Now we show that any linearly-separable Boolean function f is inG(X; �) for some �. To see this, �rst observe that the function that isidentically 1 onX is inG(X; 1); we can take �i = ~�i = 1 for i = 1; : : : ; n.Now take g to be any linearly-separable Boolean function which is notidentically 1. We can �nd �1; : : : ; �n, � and �0 < � such that for all(x1; : : : ; xn) 2 X , nXi=1 �ixi � � if g(x1; : : : ; xn) = 1and nXi=1 �ixi � �0 if g(x1; : : : ; xn) = 0:Here we allow the �i to vary in sign. Now for each i choose �+i ; ��i � 0such that �i = �+i � ��i and either �+i or ��i is 0. ThennXi=1 �ixi = nXi=1��+i xi + ��i (1� xi)�� nXi=1 ��i :29

Thus nXi=1��+i xi + ��i (1� xi)� � � + nXi=1 ��i if g(x1; : : : ; xn) = 1and nXi=1��+i xi + ��i (1� xi)� � �0 + nXi=1 ��i if g(x1; : : : ; xn) = 0:We will next divide each of these inequalities by � +Pni=1 ��i . Notethat since g is not identically 1, we havenXi=1 ���i � min(x1;:::;xn)2X nXi=1 �ixi � �0 < �:Hence �0+Pni=1 ��i � 0 and �+Pni=1 ��i > 0. We obtain the inequal-ities

30

nXi=1 �+i� +Pni=1 ��i xi + ��i� +Pni=1 ��i (1� xi) � 1 if g(x1; : : : ; xn) = 1andnXi=1 �+i� +Pni=1 ��i xi+ ��i� +Pni=1 ��i (1�xi) � �0 +Pni=1 ��i� +Pni=1 ��i if g(x1; : : : ; xn) = 0:Thus g is in G(X; ���0�+Pni=1 ��i).Example 7 Learning k-DNF for �xed k.This transformation demonstrates the use of Winnow1 to learnfunctions that are not linearly separable. The class k-DNF consistsof functions that can be expressed in disjunctive normal form with atmost k literals per term. Valiant (1985) and Kearns et al. (1987a) havestudied this class. To learn k-DNF, we let n2 =Pki=0 2i�ni�. LetTi(x1; : : : ; xn) = (c1(x1; : : : ; xn); c2(x1; : : : ; xn); : : : ; cn2(x1; : : : ; xn))where the ci(x1; : : : ; xn) range over all conjunctions that form validterms of a k-DNF formula, i.e., all conjunctions of no more than kliterals. We let Tp be the identity. For any k-DNF target function g withl terms, there exist i1; : : : ; il such that g(x1; : : : ; xn) is the disjunctionof ci1(x1; : : : ; xn); : : : ; cil(x1; : : : ; xn). Let f : f0; 1gn2 ! f0; 1g bede�ned by f(y1; : : : ; yn2) = yi1 _ � � � _ yil . Then g = f � Ti as desired.One can show that n2 � (2n)k+1. ToWinnow1, it will appear thatthe function being learned is an l-literal monotone disjunction. Thusif the target concept has l terms, Winnow1 will make O(l lognk) =O(kl logn) mistakes. By contrast, the algorithm for learning k-DNFand similar classes presented by Valiant (1984, 1985) can be forced tomake �nk� � l mistakes, which is roughly nk mistakes when l is small.Lemma 6 gives a lower bound on the Vapnik-Chervonenkis dimensionof the class of l-term k-DNF formulas. This is also a lower bound onthe mistake bound. In that lower bound, take m = dkl1=ke. We have�mk� � mkkk � l;as required. Thus a lower bound on the mistake bound, in the case thatkl1=k � n, is klblog2 ndkl1=kec:If we know l and run Winnow1 with � = 2 and � = n22l , then thenumber of mistakes made by the derived algorithm will be bounded by2l(1 + log2 (2n)k + 1l) � 2l(2 + log2 (2n)kl) = 4l+ 2kl log2 2nl1=k :31

For �xed k, this is similar in form to the lower bound.

32

7 ConclusionThis paper divides into two parts. The �rst part contains general res-ults about how many mistakes an e�ective learner might make if com-putational complexity were not an issue. The second portion describesan e�cient algorithm for learning speci�c target classes. The generalresults of the �rst part lead to the inequalities:V Cdim(C) � opt(C) �MHALV ING(C) � log2(jCj)for any non-empty target class C. Examples in Section 3 demonstratethat V Cdim(C) can be 1 for classes for which opt(C) is large, andthat MHALV ING(C) can be 1 for classes for which log2(jCj) is large.Example 2 also shows that opt and MHALV ING can di�er. There alsoexist classes C for which V Cdim(C) = log2(jCj), making all of theabove inequalities into equalities. (This is true of any class that containsexactly those concepts required to shatter some particular �nite subsetof the domain.)When we turn to e�cient algorithms, we �nd thatWinnow1,Win-now2, and their transformations do very well for certain concept classes.These include disjunctions, conjunctions, r-of-k threshold functions,other classes of linearly-separable functions with su�ciently large sep-aration, and some classes of non-linearly-separable functions, such ask-DNF for �xed small k.The results here contrast with those of Kearns et al. (1987a), whohave demonstrated that if P 6= NP and if the learner is required tochoose hypotheses from the target class, then r-of-k threshold func-tions are not polynomially learnable in the Valiant learning model. Us-ing methods that we mentioned in Section 3, Winnow2 (which learnsr-of-k threshold functions) can be converted into a polynomial learningalgorithm in the Valiant model. This algorithm succeeds in e�cientlylearning r-of-k threshold functions by choosing hypotheses from a lar-ger class of Boolean functions. Winnow1 and Winnow2 are naturalalgorithms for parallel implementation; Slade (1987) has implementedWinnow on the Connection Machine.A key advantage of Winnow1 and Winnow2 is their performancewhen few attributes are relevant. If we de�ne the number of relevantvariables needed to express a function in the class F (f0; 1gn; �) to be theleast number of strictly positive weights needed to describe a separatinghyperplane, then the bounds for Winnow1 and Winnow2 tell us thatthe target class F (f0; 1gn; �) for n > 1 can be learned with a number ofmistakes bounded by a constant times k logn�2 when the target functioncan be expressed with k relevant variables. (This follows from thebound given in Theorem 9 using the observation that, in the inequalities33

(1) and (2) in the de�nition of F (X; �), any �i larger than 1 can be setto 1 without changing the function.)Note that Winnow1 (for the target class F (X; 1)) and Winnow2achieve this bound without necessarily producing a hypothesis expressedwith few signi�cant weights. For example, if several attributes matcheach other in every instance, then their weights will always match, anda hypothesis making signi�cant use of any of them will make use of all.One theme that recurs in this paper is transformation from onealgorithm to another. We have discussed transformations of severalkinds, including:� transformations from algorithms for one target class to algorithmsfor another target class;� transformations between mistake-bounded algorithms and queryalgorithms;� transformations from mistake-bounded algorithms to algorithmsthat provably perform well in a probabilistic learning model;� transformations from arbitrarymistake-bounded algorithms to \nor-malized" mistake-bounded algorithms (e.g., the transformation to aconservative algorithm).Transformations can also be used with the hope of improving the beha-vior of an algorithm for a target class it is already capable of learning.In this regard, notice that monotone conjunctions can be learned byWinnow2 with or without the use of the transformation described inExample 5. A k-literal monotone conjunction is just a k-of-k thresholdfunction. UsingWinnow2 to learn a k-of-k threshold function, we havea mistake bound of 5k+(8+14 lnn)k2, which applies when � = 1+ 12kand � = n. If we use the transformation of Example 5, we end up usingWinnow2 to learn a derived 1-of-k threshold function. In this case,the mistake bound is 8 + (5 + 14 lnn)k with � = 32 and � = n, whichis better by a factor of k than the bound without the transformation.It is not clear to what extent this di�erence is an artifact of our ana-lysis. However, note that to express a 1-of-k threshold function, anyset of weights will work, as long as the weight of each relevant variableis above the threshold and the sum of all other weights is below thethreshold. There are tighter constraints on weights used to represent ak-of-k threshold function. The sum of all weights, omitting only that ofany single relevant variable, must be below the threshold, whereas theweights of the relevant variables must have a sum above the threshold.This suggests that a k-of-k threshold function might indeed be harderfor Winnow2 to learn than a 1-of-k threshold function.Though we have shown that Winnow2 is within a constant factorof optimal for some classes of functions, the ratio of the mistake boundto the optimum grows as � shrinks. The number of linearly-separableBoolean functions of n attributes is at most 2n2 for n > 1 (Blumer34

et al., 1987a; Muroga, 1971). Thus the halving algorithm would makeno more than n2 mistakes learning any such function. The boundfor Winnow2 grows in proportion to 1=�2, and there exist classes forwhich 1=� grows exponentially with n. Are there e�cient algorithmsthat close this gap?One advantage of Winnow1 and Winnow2 is that they performwell for functions with few relevant attributes without needing to knowthe number of relevant attributes in advance. This is not true withrespect to the separation parameter �, which a�ects the choice of themultiplier used byWinnow2. For practical problems, it would be use-ful to have a version of Winnow2 that could function without needingto know �.We have mentioned that any mistake-bounded algorithm can betransformed into an algorithm that provably performs well in a prob-abilistic learning model. One can also run a mistake-bounded algorithmwithout transformation but assume that the instances are chosen ran-domly, and then examine its behavior in probabilistic terms. It wouldbe interesting to understand the behavior of Winnow1 andWinnow2in such a setting.Finally, when the input data to the learner contains errors, Win-now1 is not robust: if a weight is mistakenly set to zero, the mistakewill never be undone. Winnow2 can learn all concept classes learn-able by Winnow1, and it is more robust. We are currently studyingits performance when there are errors in the input data.AcknowledgementsThis research was supported by Contract N00014-86-K-0454 fromthe O�ce of Naval Research. I would like to acknowledge the inspir-ation provided by many valuable discussions with David Haussler andManfred Warmuth, and by the many key questions that they asked.I also bene�ted from discussions with Sally Floyd, Ron Rivest, DanaAngluin, and Eli Upfal. Dick Karp raised the question of lower boundsfor learning monotone disjunctions, and Larry Stockmeyer and ManfredWarmuth subsequently developed ideas relating to these lower bounds.Mike Paterson and Manfred Warmuth suggested improvements to theupper bounds. Ideas leading to complete k-mistake trees were workedout in conjunction with David Haussler. Pat Langley made valuablesuggestions for improving the presentation of the results.ReferencesAngluin, D. (1987). Queries and concept learning. Machine Learning ,2 , 319{342.Angluin, D., & Smith, C. H. (1983). Inductive inference: Theory andmethods. Computing Surveys , 15 , 237{269.35

Banerji, R. B. (1985). The logic of learning: A basis for pattern re-cognition and for improvement of performance. Advances in Com-puters , 24 , 177{216.Barzdin, J. M., & Freivald, R. V. (1972). On the prediction of generalrecursive functions. Soviet Mathematics Doklady , 13 , 1224{1228.Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. (1987a).Learnability and the Vapnik-Chervonenkis dimension (TechnicalReport USCS-CRL-87-20). Santa Cruz: University of California,Computer Research Laboratory.Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. (1987b).Occam's Razor. Information Processing Letters , 24 , 377{380.Duda, R. O., & Hart, P. E. (1973). Pattern classi�cation and sceneanalysis . New York: John Wiley.Hampson, S. E., & Volper, D. J. (1986). Linear function neurons:Structure and training. Biological Cybernetics , 53 , 203{217.Haussler, D. (1985). Space e�cient learning algorithms. Unpublishedmanuscript, University of California, Department of Computer andInformation Sciences, Santa Cruz.Haussler, D. (1986). Quantifying the inductive bias in concept learn-ing. Proceedings of the Fifth National Conference on Arti�cialIntelligence (pp. 485{489). Philadelphia, PA: Morgan Kaufmann.Haussler, D., Littlestone, N., & Warmuth, M. (1987). Predicting 0,1-functions on randomly drawn points. Unpublished manuscript,University of California, Department of Computer and InformationSciences, Santa Cruz.Kearns, M., Li, M., Pitt, L., & Valiant, L. (1987a). On the learnabilityof Boolean formulae. Proceedings of the Nineteenth Annual ACMSymposium on Theory of Computing (pp. 285{295). New York:The Association for Computing Machinery.Kearns, M., Li, M., Pitt, L., & Valiant, L. G. (1987b). Recent resultson Boolean concept learning. Proceedings of the Fourth Interna-tional Workshop on Machine Learning (pp. 337{352). Irvine, CA:Morgan Kaufmann.Mitchell, T. M. (1982). Generalization as search. Arti�cial Intelli-gence, 18 , 203{226.Muroga, S. (1971). Threshold logic and its applications . New York:John Wiley.Nilsson, N. J. (1965). Learning machines . New York: McGraw-Hill.Rumelhart, D. E., & McClelland, J. L. (1986). Parallel distributedprocessing: Explorations in the microstructure of cognition. Cam-bridge, MA: MIT Press.Slade, S. (1987). The programmer's guide to the Connection Machine(Technical Report). New Haven, CT: Yale University, Departmentof Computer Science. 36

Valiant, L. G. (1984). A theory of the learnable. Communications ofthe ACM , 27 , 1134{1142.Valiant, L. G. (1985). Learning disjunctions of conjunctions. Pro-ceedings of the Ninth International Joint Conference on Arti�cialIntelligence (pp. 560{566). Los Angeles, CA: Morgan Kaufmann.Vapnik, V. N. (1982). Estimation of dependencies based on empiricaldata. New York: Springer-Verlag.Vapnik, V. N., & Chervonenkis, A. (1971). On the uniform convergenceof relative frequencies of events to their probabilities. Theory ofProbability and its Applications , 16 , 264{280.

37

