1 UCSC-CRL-87-28

Abstract

Valiant (1984) and others have studied the problem of learning vari-
ous classes of Boolean functions from examples. Here we discuss in-
cremental learning of these functions. We consider a setting in which
the learner responds to each example according to a current hypothesis.
Then the learner updates the hypothesis, if necessary, based on the cor-
rect classification of the example. One natural measure of the quality
of learning in this setting is the number of mistakes the learner makes.
For suitable classes of functions, learning algorithms are available that
make a bounded number of mistakes, with the bound independent of
the number of examples seen by the learner. We present one such al-
gorithm that learns disjunctive Boolean functions, along with variants
for learning other classes of Boolean functions. The basic method can
be expressed as a linear-threshold algorithm. A primary advantage of
this algorithm is that the number of mistakes grows only logarithmic-
ally with the number of irrelevant attributes in the examples. At the
same time, the algorithm is computationally efficient in both time and
space.

Learning Quickly When Irrelevant
Attributes Abound:
A New Linear-threshold Algorithm

Nick Littlestone

December, 1987

1 Introduction

In this paper, we consider learning from examples in a situation in
which the goal of the learner is simply to make few mistakes. The task
is to induce a concept that can be described by a Boolean function;
that is, the information received in each example is a list of Boolean
attributes and the correct response is a Boolean function of the at-
tributes. We are interested in cases where the correct-response func-
tion depends on only a small proportion of the attributes present in
each example. For example, this case may occur in pattern recognition
tasks; feature detectors may extract a large number of features for the
learner’s consideration, not knowing which few will prove useful. For
another example, consider an environment in which the learner builds
new concepts as Boolean functions of old concepts (Banerji, 1985; Vali-
ant, 1984). Here the learner may need to sift through a large library
of available concepts to find the suitable ones to use in expressing each
new concept. In a special case of this situation, one may design a
library of concepts specifically to ease learning of a certain class of
complex functions. In this case one chooses concepts for the library
that allow representation of any function in the class as a simple func-
tion of the library concepts. In the context of this paper, the concepts
in the library will just be Boolean functions themselves. For example,
consider k-DNF, the class of Boolean functions that can be represen-
ted in disjunctive normal form with no more than & literals per term

“This research was supported by ONR grant N00014-86-K-0454. This technical report
is essentially identical to the paper of the same title appearing in Machine Learning 2:
285-318, 1987, Kluwer Academic Publishers, Boston

(Valiant, 1985). If one has available intermediate concepts that include
all conjunctions of no more than k literals, then any k-DNF function
can be represented as a simple disjunction of these concepts. We will
return to this idea at the end of the paper, presenting an algorithm for
learning k-DNF.

Our main result is an algorithm that deals efficiently with large
numbers of irrelevant attributes. If desired, it can be implemented
within a neural net framework (Rumelhart & McClelland, 1986) as a
simple linear-threshold algorithm. The method learns certain classes of
functions that can be computed by a one-layer linear-threshold network;
these include, among other functions, disjunctions, conjunctions, and
r-of-k threshold functions (Hampson & Volper, 1986; Kearns, Li, Pitt,
& Valiant, 1987a). (The latter functions are true if at least r out of k
designated variables are true.) Preprocessing techniques can be used
to extend the algorithm to classes of Boolean functions that are not
linearly separable, such as k-DNF (for fixed k). When our algorithm is
applied to k-DNF formulas with few terms, it makes significantly fewer
mistakes than the algorithm presented by Valiant (1984, 1985). The
algorithm is similar to classical perceptron algorithms, but it uses a
multiplicative weight-update scheme that permits it to do much better
than classical perceptron training algorithms when many attributes are
irrelevant.

We study learning in an on-line setting. By this we mean that
there is no separate set of training examples. The learner attempts to
predict the appropriate response for each example, starting with the
first example received. After making this prediction, the learner is told
whether the prediction was correct, and then uses this information to
improve its hypothesis. The learner continues to learn as long as it
receives examples; that is, it continues to examine the information it
receives in an effort to improve its hypothesis. In this setting, it is
advantageous to use an algorithm that computes successive hypotheses
incrementally, saving work that would be required to calculate every
hypothesis from scratch from stored input examples. Our algorithm is
incremental in this sense.

We evaluate the algorithm’s learning behavior by counting the worst-
case number of mistakes that it will make while learning a function from
a specified class of functions. We also consider computational complex-
ity. We will prove that the mistake bound of our algorithm is within
a constant factor of optimal when the algorithm is applied to certain
classes of functions. The method is also computationally time and space
efficient.

Before we present the algorithm we will discuss some properties of
mistake bounds for concept classes, including general lower bounds. We
will also demonstrate a close relationship between exact identification

with equivalence queries, as presented by Angluin (1987), and learning
with a bounded number of mistakes.

The mistake bounds that we present are strong in the sense that they
do not depend on any assumption about which examples the learner
sees or the order in which it sees them: the selection and ordering
can be done by an adversary. However, due to the freedom given the
adversary, we cannot say how early the learner will make the mistakes.
For example, a single instance could be repeated arbitrarily many times
at the beginning of the sequence of trials and then followed by other
instances for which the learner does not yet know how to respond.

One can adapt mistake-bounded algorithms to work well according
to criteria that are useful in other settings. For example, consider
a setting in which the learning process is separated into two phases:
a training phase and a subsequent working phase. Learning occurs
only during the training phase; mistakes are counted only during the
working phase. Thus the only important hypothesis is the one formed
by the learner at the conclusion of the training phase. One useful
model in this context is the probabilistic model introduced by Valiant
(1984) and discussed by Blumer, Ehrenfeucht, Haussler, and Warmuth
(1987a, 1987b) and Angluin (1987). Starting with a mistake-bounded
algorithm, one can derive an algorithm that does well under the criteria
of this probabilistic model. We mention one indirect way to do this,
using Angluin’s (1987) results. Kearns, Li, Pitt, and Valiant (1987b)
have mentioned a related technique.

Another change that one might make to the learning model involves
keeping the on-line setting, but analyzing it with probabilistic instead of
worst-case assumptions. One can use the probabilistic model mentioned
above to this end. Haussler, Littlestone, and Warmuth (1987) discuss
a related model developed particularly for this setting.

It is interesting to compare our main algorithm to similar clas-
sical methods for perceptron training. Hampson and Volper (1986)
present empirical evidence that, for one classical perceptron algorithm,
the number of mistakes grows linearly with the number of irrelevant
attributes. This is in keeping with theoretical bounds from the per-
ceptron convergence theorem (Hampson & Volper, 1986; Duda & Hart,
1973; Nilsson, 1965). We know of no evidence that any other standard
perceptron algorithm does better. In contrast, we will prove that the
number of mistakes that our algorithm makes grows only logarithmic-
ally with the number of irrelevant attributes.

Others have looked at the problem of dealing efficiently with irrel-
evant attributes in the context of learning Boolean functions. Haussler
(1986) mentions two algorithms for learning disjunctive functions in
the context of Valiant’s learning model. One of them is designed to
learn rapidly in the presence of irrelevant attributes. However, that

algorithm is not naturally incremental, and thus is significantly less
time and space efficient than ours when used in an on-line setting.
Valiant (1984, 1985) introduces a mechanism by which a friendly and
knowledgeable teacher can help the learner by indicating which attrib-
utes are relevant. Hampson and Volper (1986), in addition to their
study of classical perceptron algorithms, have experimented with new
algorithms that use conditional probabilities in an effort to reduce the
cost of irrelevant attributes. They do not present theoretical bounds
for these algorithms.

The mistake-counting model that we use is essentially the same as
a model discussed in Barzdin and Freivald (1972). See Angluin and
Smith (1983) for a survey that compares a number of learning models.

2 The setting

In this section we will describe in more detail the learning environment
that we consider and the classes of functions that our algorithm can
learn. We assume that learning takes place in a sequence of trials. The
order of events in a trial is as follows:

(1) The learner receives some information about the world, corres-
ponding to a single example. This information consists of the values
of n Boolean attributes, for some n that remains fixed. We think of
the information received as a point in {0,1}". We call this point an
instance and we call {0,1}" the instance space.

(2) The learner makes a response. The learner has a choice of two
responses, labeled 0 and 1. We call this response the learner’s prediction
of the correct value.

(3) The learner is told whether or not the response was correct. This
information is called the reinforcement.

Each trial begins after the previous trial has ended.

We assume that for the entire sequence of trials, there is a single
function f : {0,1}" — {0,1} which maps each instance to the correct
response to that instance. We call this function the target function or
target concept.

We call an algorithm for learning in this setting an algorithm for
on-line learning from examples. When we speak of learning algorithms
without further qualification we refer to algorithms for on-line learning
from examples. For this paper we restrict our attention to deterministic
algorithms.

We will present mistake bounds as worst case bounds over some
class of possible target functions, which we will call the target class.

3 The nature of absolute mistake bounds

In this section we give some general results about mistake bounds for
on-line learning from examples. We present upper and lower bounds
on the number of mistakes in the case where one ignores issues of com-
putational efficiency. The instance space can be any finite space X,
and the target class is assumed to be a collection of functions, each
with domain X and range {0,1}. The results also apply to infinite X,
provided that the target class remains finite. However, computability
issues may arise in this case, and we do not consider them here.

For any learning algorithm A and any target function f, let M4(f)
be the maximum over all possible sequences of instances of the number
of mistakes that algorithm A makes when the target function is f.
For any learning algorithm A and any non-empty target class C, let
Ma(C) = maxsec Ma(f).! Define M4(C) = —1if C is empty. Any
number greater than or equal to M 4(C) will be called a mistake bound
for algorithm A applied to class C.

Definition 1 The optimal mistake bound for a target class C', denoted
opt(C), is the minimum over all learning algorithms A of M 4(C'). This
minimum is taken over all algorithms regardless of their computational
efficiency. An algorithm A is called optimal for class C if Ma(C) =
opt(C).

Thus opt(C') represents the best possible worst case mistake bound
for any algorithm learning C'.

If computational resources are no issue, there is a straightforward
learning algorithm that has excellent mistake bounds for many classes
of functions. This algorithm uses the idea of repeated halving of the set
of plausible hypotheses. This idea appears in various forms in Barzdin
and Freivald (1972), Mitchell (1982), and Angluin (1987). We restate
it in the current context because it gives an upper limit on the mistake
bound and because it suggests strategies that one might explore in
searching for computationally efficient algorithms.

Algorithm 1 (halving algorithm)

The halving algorithm can be applied to any finite class C' of func-
tions taking values in {0,1}. It maintains a list of all of the functions
in the class that agree with the target function on all past instances.
We will call the functions on this list the consistent functions. In the

!Some algorithms that we will describe are general algorithms whose functioning de-
pends on knowledge of the particular target class for which they are being used. For such
an algorithm A, we will use M4(C) to denote maxsecc Ma(f) when A is told that the
target class is C.

terminology of Mitchell (1982), the consistent functions form the cur-
rent version space of the algorithm. Initially the list contains all of the
functions in the class. To respond to a new instance, the algorithm
computes the values of all consistent functions at the new instance, and
makes the prediction that agrees with the majority (or either possibility
in case of a tie). Following each trial, the algorithm updates the list of
consistent functions.

We will now give a second description of the halving algorithm to
introduce notation that we will use later. Given a target class C' and
a point z in the associated instance space X, let £ (C,z) denote the
subset of C containing those functions that are 0 at z, and let & (C, x)
denote those functions in C' that are 1 at z.

The halving algorithm maintains a variable CONSIST whose value
is a set containing all functions in C' that are consistent with all past in-
stances. Initially CONSIST = C. When the halving algorithm receives
an instance, it determines the sets o (CONSIST, x) and & (CONSIST,).
If |£&1(CONSIST, z)| > |&(CONSIST, x)| then the algorithm predicts
1; otherwise it predicts 0. When the algorithm receives the reinforce-
ment, it sets CONSIST accordingly: if the correct response to x is 0
then it sets CONSIST to & (CONSIST, x); otherwise it sets CONSIST
to & (CONSIST, z). Let Myarving(C) denote the maximum number
of mistakes that the algorithm will make when it is run for the target
class C (i-e., its initial list of functions consists of C) and the target
function in fact comes from C.

Theorem 1 For any non-empty target class C, Myarving(C) <
log, |C'.
PROOF: Since there are only two possible predictions, the learner will
always be able to choose a prediction agreed to by at least half of the
current list of consistent functions. Whenever a mistake occurs, those
functions that agree with the prediction of the learner will be eliminated
from the list of consistent functions; these functions constitute at least
half of the list. Thus at each mistake the size of the list will be divided
by at least two. Since we have assumed that the target function is in
the initial class of functions, there will always be at least one consistent
function. Thus the method can make at most log, |C| mistakes. O
The theorem above also holds for a modified version of the halving
algorithm in which CONSIST is only changed following trials in which
mistakes occur. The same proof applies in this case. The halving
algorithm immediately gives us the following theorem:

Theorem 2 For any finite target class C, opt(C) < log, |C|. O

Example 1 Note that for some classes of functions this bound is not
tight. For example, for z € {0,1}" let g, : {0,1}" — {0,1} be the

function that is 1 at « and 0 elsewhere. Then one can easily verify that
the halving algorithm applied to the class of functions {gs }ze{0,13» Will
make at most one mistake.

Now we will study opt(C) more closely. To do this we need the
following definitions.

Definition 2 A mistake tree for a target class C over an instance space
X is a binary tree each of whose nodes is a non-empty subset of C and
each of whose internal nodes is labeled with a point of X, which satisfies
the following;:

(1) The root of the tree is C.

(2) Given any internal node C' labeled with x, the left child of C”, if
present, is & (C',), and the right child, if present, is & (C’,).

For example, Figure 1 shows the mistake tree for C when X = {0, 1}5
and C cousists of the functions f;(z1,...,x5) = x;, fori=1,...,5.

A complete k-mistake tree is a mistake tree that is a complete binary
tree of height k. We define the height of a tree to be the length in
edges of the longest path from the root. The tree above is a complete
2-mistake tree. These trees provide a way to characterize the number
of mistakes made by an optimal learning algorithm. We will present
an optimal algorithm, and then discuss the number of mistakes that it
makes.

For any non-empty finite target class C, let K(C') equal the largest
integer k such that there exists a complete k-mistake tree for C'. The
definition of mistake trees guarantees a finite upper bound to k. Let
K@) = 1.

Algorithm 2 (standard optimal algorithm)

The standard optimal algorithm is similar to the halving algorithm.
It maintains the variable CONSIST in the same manner, and like the
halving algorithm examines & (CONSIST, z) and & (CONSIST, z) to
determine its prediction. The only difference from the halving al-
gorithm lies in the rule it uses to choose its prediction. Instead of
predicting according to which of these sets of functions is larger, it com-
pares K (§,(CONSIST, z)) with K (& (CONSIST, x)). If K(& (CONSIST, x)) >
K (&(CONSIST,x)) then the algorithm responds 1; otherwise it re-
sponds 0. Thus whenever a mistake occurs, the remaining consistent
functions have the smaller maximal complete mistake tree.

Theorem 3 Let X be any instance space. Let SOA denote the stand-
ard optimal algorithm defined above, and let C be any finite class of
functions with domain X and range {0,1}. Then

opt(C) = Msoa(C) = K(C).

{fi, fo, f5, fa, f5}
label (0,0,1,1,1)

{f1, f2} {fs, fa, f5}
label (0,1,0,0,0) label (0,0,0,1,1)
{fi} {f2} {fs} {fa, f5}

Figure 1. A complete 2-mistake tree.

We will prove this theorem using the following two lemmas:

Lemma 1 For any target class C,
opt(C) > K(C).

ProoF: This follows trivially from the definition if C' is empty. As-
sume C is non-empty, and let k¥ = K(C). Saying that opt(C) > k is
equivalent to saying that for any deterministic learning algorithm A,
there exists a function f € C' and a sequence of instances such that
A makes at least k£ mistakes when presented with that sequence of in-
stances. Given an algorithm A, we will show how an adversary can
choose a function and a sequence of instances such that A makes at
least k mistakes. The adversary keeps track of a current mistake tree.
Initially this is a complete £ mistake tree for C'. If £k = 0, the lemma
follows trivially. Otherwise, the first instance chosen by the adversary
is the label of the root of the tree. Whatever the algorithm predicts,
the adversary tells the algorithm that its prediction is wrong. This
response of the adversary eliminates some functions as possible tar-
get functions. The remaining candidate functions are either the class
& (C,x) or the class & (C,x), depending on the algorithm’s prediction
and the adversary’s response to it. One of the two subtrees of the root
of the adversary’s current mistake tree is a complete k — 1 mistake tree

for the remaining candidate functions. The adversary sets its current
mistake tree to that subtree. It chooses the next instance to be the
label of the root of the new current tree. The adversary continues in
this manner, forcing the algorithm to be wrong at each instance. After
J mistakes, the adversary’s current tree is a complete k& — j mistake
tree for the remaining candidate target functions. As long as j < k, the
root of the current tree has two children corresponding to non-empty
subclasses of C; thus the adversary can choose a point (the label of the
root) at which it can force the algorithm to make a mistake. When
j = k, k mistakes have been made, as desired. The target function
chosen by the adversary can be any candidate remaining after the last
mistake was made. Ol

Lemma 2 Let C be a finite non-empty target class. Suppose that SOA
is run to learn some function in C' and that the sequence of instances
it receives is x1,...,%;. Consider the variable CONSIST maintained
by SOA. Let CONSIST; denote the value of CONSIST at the start of
trial i. For any k >0 and i in {1,...,t}, if K(CONSIST;) = k, then
SOA will make at most k mistakes during trials i,...,t.

Proor: We prove this by induction on k, taking £ = 0 to be the base
case. By the construction of SOA, the target function will always be
in CONSIST;. If K(CONSIST;) = 0 then CONSIST; can contain only
the target function. (If there are two functions in CONSIST;, then any
instance on which they differ is the label of the root of a complete 1-
mistake tree for CONSIST;.) The definition K(()) = —1 ensures that
SOA will always respond correctly when CONSIST; contains only the
target function. This proves the base case of the induction.

Now we will prove the lemma for arbitrary k£ > 0, assuming that it
holds for k— 1. If SOA makes no mistakes during trials i,...,¢—1 then
we are done. Otherwise, let j be the number of the first trial among
trials 7,...,¢ — 1 at which SOA makes a mistake. If there are complete
k-mistake trees for both & (CONSIST;,x;) and & (CONSIST;,x;),
then we can combine them into a complete k& + 1 mistake tree for
CONSIST};; we add a root node labeled with z;. Since CONSIST; C
CONSIST; it is easy to transform this into a complete k& + 1-mistake
tree for CONSIST;. But we have assumed that there does not exist
a complete k + l-mistake tree for CONSIST;. Thus at least one of
K (&(CONSIST,z;)) and K (& (CONSIST,,z;)) must be less than
k. Since the response of SOA corresponded to the larger of these two
values for K, and since SOA was wrong, CONSIST;,; will have the
property that K (CONSIST j11) < k. By the induction hypothesis, SOA
will make at most k — 1 mistakes during trials j + 1,...,¢. This gives
the desired result. Ol

10

Table 1. Values of nine functions in Example 2.

fi fo fs fa fs fo fr fs fo
ai 1 0 0 0 0 0 0 0 0
az 0 1 0 0 0 0 0 0 0
as 0 0 1 0 0 0 0 0 0
a4 0 0 0 1 0 0 0 0 0
as 0 0 0 0 1 0 0 0 0
as 0 0 0 0 0 1 1 1 1
ar 0 0 0 0 0 0 0 1 1
as 0 0 0 0 0 0 1 0 1

Proor oF THEOREM 3: If we set K = K(C) and ¢ = 1 in Lemma 2
we get Mgsoa(C) < K(C). Lemma 1 states K(C) < opt(C). From the
definition of opt(C') we have opt(C) < Msoa(C). The theorem follows.
(|

One of the consequences of this theorem is that we could use opt
instead of K in the description of SOA and obtain the same algorithm.

Note that Example 1 shows that there are arbitrarily large target
classes C for which opt(C') = 1. Using this, one can construct a target
class C for which there is some point = such that

|£0(C7 ZL”)| > |£1 (C7 ZL”)|

but
opt(&(C,z)) < opt(&1(C,z)).

For such a target class, if the point z is the first instance, then the
standard optimal algorithm and the halving algorithm will make differ-
ent predictions for x. Let us consider an example of such a target class
for which the halving algorithm is not optimal.

Example 2 Let the instance space X be an eight element set {ay, ..., as}.
Let the target class C' consist of nine functions fi, ..., fo, with values
shown in Table 1. If the first three instances received by the halving
algorithm are ag, a7, ag in that order, then there is some target function
for which the halving algorithm will make three mistakes. (If we use
the version of the halving algorithm that chooses 0 in case of a tie,
then the halving algorithm will make three mistakes for target func-
tion fy9.) On the other hand, there is no sequence of points and target
function for which SOA will make more than 2 mistakes. One can see
this by considering each point of the instance space in turn. For every
x € X either opt(&(C,x)) < 1 or opt(&(C,x)) < 1. Thus no mat-
ter on which instance SOA makes its first mistake, its prediction will

11

have been chosen so that the remaining consistent functions have an
optimal mistake bound of at most one. Hence the halving algorithm is
not optimal for this target class.

Now we give a lower bound for opt(C) in terms of the Vapnik-
Chervonenkis (Vapnik & Chervonenkis, 1971) dimension of C', which
is a combinatorial parameter that has proven useful in other studies of
learning (Vapnik, 1982; Blumer et al., 1987a; Haussler, Littlestone, &
Warmuth, 1987).2 To define the Vapnik-Chervonenkis dimension, we
use the notion of a shattered set.

Definition 3 A set S C X is shattered by a target class C' if for every
U C S there exists a function f € C such that f is 1 on U and 0 on
S—-U.

Definition 4 The Vapnik-Chervonenkis dimension of a non-empty tar-
get class C' is the cardinality of the largest set that is shattered by C'.
We will denote this VCdim/(C). We will define VCdim(0) = —1.

Theorem 4 For any target class C, VCdim(C) < opt(C).

ProOOF: Let k = VCdim(C). Choose any set {vq,...,vx} C X that
is shattered by C. Then we can construct a complete k-mistake tree
for ¢' with all internal nodes at depth j labeled with vj;, for j =
0,1,...,k—1. The nodes are chosen to be subclasses of C' as required in
the definition of a mistake tree. These subclasses will be all non-empty
(as required by the definition) by virtue of the fact that {vy,...,vg} is
shattered by C. O

The Vapnik-Chervonenkis dimension will prove to be a useful lower
bound on opt(C) for concept classes that we will consider in later sec-
tions of the paper. However, there are also concept classes for which
the Vapnik-Chervonenkis dimension is a very weak lower bound. In
fact, as the following example shows, opt(C) can be arbitrarily large
for classes for which VCdim/(C) = 1.

Example 3 For n > 0, take X = {1,...,2" — 1}. For each j €
{1,...,2"} let f; : X — {0,1} be the function such that f;(z) = 1 if
and only if < j. Let C = {f; : 1 < j < 2"}. Then VCdim(C) =1
but opt(C) = n. To see this, first note that for any f € C if f(z) =1
then for all y < z, f(y) = 1. Thus no set of size 2 is shattered and
VCdim(C) = 1. Also, by Theorem 2, opt(C) < log, |C| = n. To see
that opt(C') > n we can construct a complete n-mistake tree. Label
the root with the point 271, We have &(C,2" 1) = {f1,..., fon-1}
and & (C,2" 1) = {fon-141,..., fon }. Each of these two subclasses is

*In Vapnik (1982), the Vapnik-Chervonenkis dimension is called the capacity.

12

similar to the original class but half as large. It is easy to see that
points can be found to be the labels of the children of the root that will
split each of the subclasses exactly in two. This line of reasoning can
be formalized to yield an inductive construction of the mistake tree.

4 General transformations

There is a close relationship between learning algorithms of the type
that we have been considering and those that exactly identify a target
function using a bounded number of equivalence queries, as described
by Angluin (1987). An equivalence query is a request by an algorithm
that asks if the target function matches some function described in the
query. Whenever an algorithm receives a negative answer to an equi-
valence query, it also receives a counterexample, i.e., a point at which
the target function and the proposed function disagree. The equival-
ence query algorithms that we consider here receive no examples as
input other than the counterexamples to the queries. In this section,
we will use the term “query algorithm” to refer to an algorithm that
learns using equivalence queries, and the terms “on-line learning al-
gorithm”, “mistake-bounded algorithm”, and “algorithm for learning
from examples” to refer to algorithms of the type discussed elsewhere
in this paper.

To describe the relationship between equivalence query algorithms
and our model, we must define the notion of the current hypothesis of an
algorithm for on-line learning from examples. The current hypothesis is
defined initially and between trials, and is a function from the instance
space to {0,1}. Its value at any instance z is defined to be the response
that the algorithm would give at the next trial if the instance received
in the next trial were x. This is well-defined for any deterministic
algorithm. If we copy the state of an algorithm at the conclusion of a
trial, then we can use the copy of the state to determine (by simulating
the algorithm) what prediction the algorithm would make for any new
instance, without sending that instance to the running version of the
algorithm. Thus the state can be considered a representation of the
current hypothesis of the algorithm. (Often a portion of the state will
suffice.) Using this representation to represent the functions appearing
in queries, an algorithm that learns from examples can be transformed
into a query algorithm. We will show that the number of queries needed
will be at most one more than the number of mistakes that the learning-
from-examples algorithm would make.3

3Note that for most of Angluin’s results, the queries are restricted to use only functions
from the target class in question. For the conversion here, the functions used in the queries
must be allowed to come from the class of functions that the original algorithm uses for

13

The inverse transformation is also possible: a query algorithm can
be transformed into an algorithm that learns from examples making
a bounded number of mistakes. The efficiency of the transformed al-
gorithm will depend on the difficulty of evaluating the functions given
in the queries. The number of mistakes made by the transformed al-
gorithm is bounded by the number of queries used by the query al-
gorithm. We now give the details of these transformations.

Algorithm transformation 1 Given a mistake-bounded learning al-
gorithm A, this transformation yields a query algorithm B for the same
target class. The first query of the derived algorithm B is the initial
hypothesis of algorithm A. Algorithm B waits for a response to this
query and then repeats the following for the first response and the re-
sponse to each subsequent query: if the response indicates that the
query specified the correct target function, then algorithm B halts and
reports the correct target function; otherwise, the response to the latest
query includes a counterexample. The derived algorithm gives this in-
stance to algorithm A. After receiving A’s prediction, it tells A that
the prediction was incorrect. (Algorithm B knows that A will be wrong
here, since the last query was just the current hypothesis of A, and by
definition the current hypothesis tells how A will respond to the next
instance.) Algorithm B takes the new hypothesis of algorithm A and
uses it as the next query, continuing in this fashion until it determines
the correct target function.

Since every query after the first results from a mistake of A, we
have the following theorem:

Theorem 5 The number of queries needed by the derived algorithm to
exactly identify target function f is bounded by Ma(f) + 1. O

Algorithm transformation 2 Now suppose we are given a query al-
gorithm A that achieves exact identification of every function in some
target class C with a bounded number of queries. This transformation
yields a mistake-bounded learning algorithm B for the same target
class. The initial hypothesis of algorithm B is the hypothesis output
by the query algorithm as its initial query. Algorithm B uses this hy-
pothesis to respond to all instances that are received until it is told that
it has made a mistake. Until the first mistake, algorithm A receives no
response to its first query. At the time of the first mistake, algorithm

its hypotheses. Also note that with this transformation, the functions used in the queries
will not necessarily be given a compact symbolic representation. However, if the query
algorithm is derived from a computationally efficient algorithm for on-line learning from
examples, then the query functions will be represented in a form that can be efficiently

evaluated.

14

B gives algorithm A a response to its query: it tells A that its hy-
pothesis was wrong, and reports that the instance at which a mistake
was made is a counterexample. Algorithm B now waits to make any
further predictions until A either makes another query or halts and re-
ports the correct target function. Since A achieves exact identification,
one of these events will occur. The hypothesis given in the new query
(or the reported target function) becomes the new current hypothesis
of algorithm B. The derived algorithm B proceeds in this manner
indefinitely.

The next theorem follows immediately.

Theorem 6 For any target function f € C, the number of mistakes
made by the derived algorithm in learning f is bounded by the number
of queries needed by algorithm A to exactly identify f. O

One can also convert a mistake-bounded algorithm into an algorithm
that learns effectively in the probabilistic model introduced by Valiant
(1984) and described by Blumer et al. (1987a, 1987b). Angluin (1987)
refers to this model as pac-learning, where pac stands for “probably
approximately correct.” One way to perform the conversion essentially
follows a method discussed by Kearns, Li, Pitt, and Valiant (1987b) for
using failure bounds to derive probabilistic learning results. Alternat-
ively, one can use an indirect route: one can convert a mistake-bounded
algorithm into an algorithm for exact identification using equivalence
queries, and then use a conversion described by Angluin (1987) to ob-
tain an algorithm for the probabilistic setting.

Other general algorithm transformations are possible. Sometimes it
is useful to have an algorithm that changes its hypothesis only when a
mistake occurs; Haussler (1985) has referred to such methods as con-
servative. One can transform a mistake-bounded algorithm into a con-
servative algorithm with the same mistake bound. Haussler (1985) has
referred to such methods as failure-bounded. One way to convert a
mistake-bounded algorithm to a conservative algorithm is to use the
above transformations to convert it first to an equivalence query al-
gorithm and thence back to a mistake-bounded algorithm. The mistake
bound increases by one if the above theorems about the transformations
are applied as they stand. With more careful analysis of the double
conversion, the increase disappears. The conversion to a conservative
algorithm is also straightforward to perform directly.

5 The linear-threshold algorithm

Now we describe our main algorithm, first describing the classes of
target functions. We will consider linearly-separable Boolean functions,

15

which are those functions that can be computed by a one-layer linear-
threshold network such as a perceptron. A function from {0,1}" to
{0,1} is said to be linearly separable if there is a hyperplane in R"
separating the points on which the function is 1 from the points on
which it is 0. Monotone disjunctions constitute one class of linearly-
separable functions.

Definition 5 A monotone disjunction is a disjunction in which no
literal appears negated, that is, a function of the form

f(mla"';xn):mhv"'vxik:‘

The hyperplane given by x;, +- - -+x;, = 1/2is a separating hyperplane
for f(z1,...,xp) = @3, V -+ V x;,. We will present two variants of
our algorithm. The first variant, which we now present, is specialized
for learning monotone disjunctions. We will later describe a simple
transformation to remove the monotone restriction.

Algorithm 3 (WINNOW1)

We call this algorithm “WINNOW” because it has been designed
for efficiency in separating relevant from irrelevant attributes. We
will present the algorithm as a linear-threshold algorithm. The in-
stance space is X = {0,1}". The algorithm maintains non-negative
real-valued weights w;, ..., w,, each having 1 as its initial value. The
algorithm also makes use of a real number 6, which we call the threshold.
When the learner receives an instance (1, . . ., @y), the learner responds
as follov%s:

o If > w;x; > 6, then it predicts 1;

=1

o If Y w;x; <46, then it predicts 0.

=1
n
The choice of prediction when Y w;z; = 6 is not critical for our results.

The weights are changed (;nlly if the learner makes a mistake, and
then only the weights corresponding to non-zero x; are changed. The
amount by which the weights are changed depends on a fixed parameter
a > 1. Good bounds are obtained if 8 is set to n/2 and « is set to 2.
We will say more about the values of o and # later. Table 2 describes
the changes made to the weights in response to different combinations
of prediction and reinforcement. The threshold is left fixed.

Note in Table 2 that we have given each type of update action a
name; each mistake corresponds to a single promotion step or to a
single elimination step. The space needed (without counting bits per
weight) and the sequential time needed per trial are both clearly linear
in n. Note that the non-zero weights are powers of a. We will prove

16

Table 2. WINNOW1’s response to mistakes.

learner’s correct update update
prediction | response action name
1 0 w; =0ifx; =1 elimination

w; unchanged if ; =0 | step

0 1 w;i=a-w; ifz; =1 promotion
w; unchanged if ; =0 | step

that the weights are at most af. Thus if the logarithms (base «) of
the weights are stored, only O(log, log, €) bits per weight are needed.
The running time needed to calculate predictions and changes to the
weights could be reduced greatly by parallel implementation, such as
with an appropriately constructed neural net. For a mistake bound we
give the following theorem.

Theorem 7 Suppose that the target function is a k-literal monotone
disjunction given by f(z1,...,z,) =z, V---Vx;, . If WINNOWL is
run with o > 1 and 6 > 1/, then for any sequence of instances the
total number of mistakes will be bounded by ak(log, 6 + 1) + 7.

For example, if 8§ = n and a = 2 then the mistake bound is
2k(log, n+1)+1. If we set 6 = 2, the bound simplifies to ak log, n+a.
For a = 2 this gives a bound of 2k log, n+2. The dominating first term
is minimized for a = e; the bound then becomes @klog2 n+e<
1.885klog, n + €.

We will prove this theorem by finding bounds on the number of
promotion and elimination steps that occur. First we give three lemmas
used in the proof.

Let u be the number of promotion steps that have occurred by the
end of some sequence of trials and let v be the number of elimination
steps that have occurred by the end of the same sequence of trials.

Lemma 3 v < 7 + (a — 1)u.

Proor: Consider how the sum > ! w; changes over time. Initially
the sum is n; promotion and elimination steps cause it to change. Each
promotion steps increases this sum by at most (a — 1), since when a
promotion step occurs we have Zi‘ e;—1 Wi < 6. Each elimination step
decreases Y., w; by at least 6. Since the sum is never negative we
have

OSZwign-l-H(a—l)u—Gv,
i=1

17

giving the desired result. Ol
Lemma 4 For all i, w; < af.

PROOF: Since § > 1/, the weights are initially less than or equal to
af. For any j, the value of w; is only increased during a trial in which
z; =1 and Z? w;z; < 6. These conditions can only occur together if
w; < 6 immediately prior to the promotion. Thus w; < af after the
promotion. 1

Lemma 5 After u promotion steps and an arbitrary number of elim-
ination steps, there exists some i for which log, w; > u/k.

PrOOF: Let R = {iy,...,ix}. We look at how the product [];., w; is

changed by elimination and promotion steps. Note that f(z1,...,z,) =
0 if and only if z; = 0 for all i € R. Elimination steps occur only when
f(zy1,...,z,) = 0; promotion steps occur only when f(z;,...,z,) = 1.

Thus [];czw: is unchanged by elimination steps and is increased by
a factor of at least o by each promotion step. Initially [];.,w; = 1.
Thus after u promotion steps [[;cp wi > a*, giving), log, w; > u.
Since |R| = k, for some i € R we have log, w; > u/k, as desired. O

Note that only the last of these lemmas depends on the form of the
target function and it is only there that k appears.

Proor or THEOREM T7: The total number of mistakes made during
a run of the algorithm is equal to the number of promotion steps, w,
plus the number of elimination steps, v. We bound u using the last two
lemmas and then use the first lemma to bound v. Combining lemmas
4 and 5 we see that

U/k < loga w; < loga0 + 17
or
u < k(log, 0+ 1).

Lemma 3 now gives
v < % + (@ — Dk(log, 6+ 1).

Adding the bounds on u and v leads to the desired bound on the total
number of mistakes. O

Note that the above algorithm does not depend on k. Thus the
algorithm can learn the entire target class of monotone disjunctions
without modification. The mistake bound depends on the number of
literals in the actual target concept. Now for 1 < k < n, let Cr
denote the class of k-literal monotone disjunctions, and let C}, denote

18

the class of all those monotone disjunctions that have at most k-literals.
Suppose one wants to specialize the algorithm to learn the target class
Ch, efficiently for a particular ko. If one chooses 8 = aiko, then the
mistake bound becomes

aklog, kﬁ + aky < ako(1 + log, kﬁ)
0 0

when the target function is a k-literal monotone disjunction in Cy,. For
o = 2 this gives a bound of 2ko(1 + log;, ¢-). For a = e we obtain the
bound ko (e + 1.885log, 7-).

We now give a lower bound on the number of mistakes needed to
learn Cj, and C.

Theorem 8 (lower bound) For 1 < k < n, opt(Cy) > opt(Cy) >
k[logy 1. Forn > 1 we also have opt(Cy) > %(1 +logy 7)-

The second form gives a formula directly comparable to the upper
bound above. When the above algorithm is specialized for a partic-
ular C and when n > 1, the algorithm is within a constant factor of
being optimal.

Proo¥: Since Cy C Cy, it is clear that opt(Cy) > opt(Cy). By The-
orem 4, any algorithm to learn a concept class will have a mistake bound
at least equal to the Vapnik-Chervonenkis dimension of the concept
class. In the following lemma we show that the Vapnik-Chervonenkis
dimension of Cy is bounded below by k|log, %]. This gives the first
part of the theorem. We will split the derivation of the second formula
from the first into two cases, depending on whether or not k¥ < . If
k < & then log, 3+ > 1. Thus

n k n n k n k n
k[log, EJ > §(2|_10g2 EJ+108§2 E_l) > §(2+10g2 E_l) > §(1+10g2 E)
as desired. If n > &k > 2, then opt(C},) > opt(CN'L%J) since CN'L%J C Cy.
(Here we use the assumption that n > 1.) We have

opt(Clz) > 5] llogs Ta7) > L5 lloga 2] = L5 >

1
5"

|3

We also have

k
< (1 +log, %) < z(L+logy2) =

8

x| 3
-3

For n > 2, this is less than or equal to § — %, giving the desired result.
O

19

We will prove a more general lemma than is needed here, since it will
give us results that will be useful later. Note that k-literal monotone
conjunctions are just 1-term monotone k-DNF formulas. Also [-literal
monotone disjunctions are [-term monotone 1-DNF formulas.
Lemma 6 For 1 <k <nandl <[< (Z), let C be the class of
functions expressible as l-term monotone k-DNF formulas and let m
be any integer, k < m < n such that (7;;) > 1. Then VCdim(C) >

kl|log, 7].

Note in particular that if [is 1 then we can take m to be k and if & is
1 then we can take m to be [.

PRrOOF: Let 7 = |log, 2 |. If r = 0, then the theorem follows trivially,
since C is non-empty. Assume r > 0. Let s = 2". Note that ms <
n. We will construct a set S C {0,1}" containing klr points that is
shattered by C. To describe the construction we will need to refer
to an enumeration of the (7:) ways to choose k distinct integers from
the set {1,...,m}. Let {(xj1,.-.,Kjk)}, where j runs from 1 through
("), be such an enumeration. (The values of the rj; are the chosen
integers.) We will construct S as the union of sets Sj; fori =1,...,k
and j = 1,...,l. Each set Sj; contains r points and each point has
n coordinates. Split these coordinates into groups so that there are m
disjoint groups of s coordinates each. There may be some coordinates
left over; we will not make them a part of any group. Number the groups
from 1 through m. Fix attention on some ¢ and j. Let all coordinates
of each point in S;; be 0 except for coordinates in the groups numbered
kj1 through xj;. Let the coordinates in groups s;; through s, be 1
except for those in group x;;. The coordinates in group «;; are used to
distinguish the points within set S;;. Set the coordinates in this group
to 0 or 1 in such a manner that for each subset V' C Sj;, there is a
corresponding coordinate in group r;; that is 1 at points in V" and 0 at
points in S;; — V. This is possible since there are 2" subsets of S;; and
there are 2" coordinates in the group. For example, suppose n = 24,
k =2, and | = 3. If we take m = 3, then we get r = 3. Picking
(1,2),(1,3),(2,3) as the enumeration of the three ways to choose two
integers from {1,2,3}, we can take the sets S;; as shown in Table 3.
Now we show how to construct an [-term k-DNF formula that is 1
exactly on some arbitrary subset U C S. Each of the [terms of this
formula will have length exactly k, and no literal will be negated. Let
U;; = UNSj;. We will express the formula in terms of n variables, with
one variable corresponding to each coordinate. This gives m groups of
variables, corresponding to the m groups of coordinates. The jth term
will contain one variable from each of the groups kji,..., k5. We
choose the ith variable in the jth term from group kj; so that it is 1 at

20

Table 3. An example of the sets Sj;.

Su = {(0,0,0,0,1,1,1,1, 1,1,1,1,1,1,1,1, 0,0,0,0,0,0,0,0),

0,0,1,1,0,0,1,1, 1,1,1,1,1,1,1,1, 0,0,0,0,0,0,0,0),
0,1,0,1,0,1,0,1, 1,1,1,1,1,1,1,1, 0,0,0,0,0,0,0,0) }
1,1,1,1,1,1,1,1, 0,0,0,0,1,1,1,1, 0,0,0,0,0,0,0,0),
11,1,1,1,1,1,1, 0,0,1,1,0,0,1,1, 0,0,0,0,0,0,0,0),
1,1,1,1,1,1,1,1, 0,1,0,1,0,1,0,1, 0,0,0,0,0,0,0,0) }
0,0,0,0,1,1,1,1, 0,0,0,0,0,0,0,0, 1,1,1,1,1,1,1,1
0,0,1,1,0,0,1,1, 0,0,0,0,0,0,0,0, 1,1,1,1,1,1,1,1

)
)
)
Sl2)
)
)
)
0,1,0,1,0,1,0,1, 0,0,0,0,0,0,0,0, 11,11,1,1,1,1)}
)
)
)
)
)
)
)
)
)

NN AN AN AN AN NN AN AN AN AN NN

{

So1 = {

)

Sy = {(1,1,1,1,1,1,1,1, 0,0,0,0,0,0,0,0, 0,0,0,0,1,1,1,1
1,1,1,1,1,1,1,1, 0,0,0,0,0,0,0,0, 0,0,1,1,0,0,1,1
1,1,1,1,1,1,1,1, 0,0,0,0,0,0,0,0, 0,1,0,1,0,1,0,1

0,0,0,0,0,0,0,0, 0,0,0,0,1,1,1,1, 1,1,1,1,1,1,1,1

0,0,0,0,0,0,0,0, 0,0,1,1,0,0,1,1, 1,1,1,1,1,1,1,1
0,0,0,0,0,0,0,0, 0,1,0,1,0,1,0,1, 1,1,1,1,1,1,1,1

ITITITI Ty

)

)

Ss1 = {
}
0,0,0,0,0,0,0,0, 1,1,1,1,1,1,1,1, 0,0,0,0,1,1,1,1),

0,0,0,0,0,0,0,0, 1,1,1,1,1,1,1,1, 0,0,1,1,0,0,1,1
0,0,0,0,0,0,0,0, 1,1,1,1,1,1,1,1, 0,1,0,1,0,1,0,1

Sz = {

)

all of the points in Uj; and 0 at points in Sj; — Uj;. This is possible
due to the way the sets Sj; were constructed.

To see that this formulais 1 on U and 0 on S —U, consider any point
xz € S. This point will be in Sj; for some ¢ and j. The coordinates of
the point will be 0 except in groups £;1, ..., kj;. Thus every term but
the jth will contain at least one variable that is 0 at z. Therefore the
formula will be 1 if and only if the jth term is 1. The coordinates of z
will be 1 in groups &;1,. .., Kjk, except possibly in group x;;. Hence all
variables in the jth term will be 1, except possibly for the ith variable.
Therefore the value of the formula at x will match the value of the ¢th
variable of the jth term. This variable will be 1 if + € Uj; and 0 if
x € Sj; — Uj;, as desired. O

The algorithm can be modified to work on larger classes of Boolean
functions. For any instance space X C {0,1}", and for any § satisfying
0 <0 <1let F(X,0) be the class of functions from X to {0,1} with
the following property: for each f € F(X,0) there exist p1,...,un >0
such that for all (z1,...,2,) € X

S wiwi =1 i flwy,..wn) =1 (1)
i=1

21

Table 4. WINNOW2’s response to mistakes.

learner’s correct update update
prediction | response action name
1 0 w; =w;/aifz; =1 demotion

w; unchanged if x; =0 | step

0 1 w;i=a-w; ifz; =1 promotion
w; unchanged if x; =0 | step

and

=1

In other words, the inverse images of 0 and 1 are linearly separable with
a minimum separation that depends on . We will present a second
variant of WINNOW that can handle target classes of this form.

The mistake bound that we derive will be practical only for those
linearly-separable functions for which 4 is sufficiently large. For ex-
ample, these include the Boolean r-of-k threshold functions. Let X =
{0,1}". An r-of-k threshold function f(z1,...,x,) is defined by select-
ing a set of k significant variables. The value of f is 1 whenever at least
r of these k variables are 1. If the k selected variables are x;,, ..., z;,,
then f is 1 exactly when x;, +--- + x;, > r. Equivalently, f is 1 when

1 1
T + -+ —xy, > 1.
r T

The value of f is 0 when no more than r — 1 of the selected variables
are 1. In this case

1 1 1

-z + 4+ =z, < 1—-—.

r T T
Thus the r-of-k threshold functions are contained in F({0,1}", 1).

There exist other classes of linearly-separable Boolean functions for

which § grows exponentially with n when the instance space is {0,1}"
(Muroga, 1971; Hampson & Volper, 1986). One example of a set of
functions with exponentially small § consists of

flay,...,xn) =a1 V(2 A(xg V (Ta A+ y)) - +)

as n varies. For such functions, the mistake bound that we will derive
grows exponentially with n. We now give a description of the second
variant of WINNOW.

Algorithm 4 (WINNOW2)

22

The only change to WINNOW1 involves the amount by which the
weights are changed when a mistake is made. In a promotion step, as
before, we multiply the weights by a fixed @ > 1. But now, instead
of setting weights to zero in an elimination step, we divide them by «.
(We now call this a demotion step.) We must now be more careful in
our choice of a. For the mistake bound that we derive below, we use
a =1+ §/2 for learning a target function in F(X,J).

Table 4 describes WINNOW2’s responses to different types of mis-
takes. Space and time requirements for WINNOW2 are similar to those
for WINNOW1. However, more bits will be needed to store each weight,
perhaps as many as the logarithm of the mistake bound. The following
theorem gives a mistake bound for WINNOW2.

Theorem 9 For 0 < & < 1, if the target function is in the class
F(X,68) for X C {0,1}", if pu1,...,un have been chosen so that the
target function satisfies the inequalities (1) and (2), and if Algorithm
4 is run with o = 1+ g and 8 > 1 and the algorithm receives instances
from X, then the number of mistakes will be bounded by

8n 5 14In6 <&
wet G e I

Before proving this theorem, we will state and prove three lemmas
analogous to the lemmas used to prove Theorem 7. We define v and v
in the same manner as for those lemmas. The current lemmas do not
depend on the particular choice of « given in Theorem 9.

Lemma 7

< @ n .
v — + au.

“a-—1860

Proor: We will examine how the weights are changed by promotion
and demotion steps. We will use w; per to denote weights at the begin-
ning of a trial in which a promotion or demotion occurs, and w; a¢ to

denote the weights resulting from the promotion or demotion. For a
promotion step, we can write the update rule as

Wi aft = Wibef + (@ — D)zjw;per for i =1,...,n.

Since a promotion step only occurs when Z?:l Wi pefT; < 0, we have

n n
Z Wi af < Z Wibef + (v —1)0
i=1 i=1

for a promotion step. For a demotion step, we have

Wi,aft = Wi, bef — (1 — E)Iiwi7bef for ¢ = 1, -, n.

23

A demotion step only occurs when Z?:l Wi pefTi > 0. Thus

Zwi7aft < Zwi,bef —(1-1/a)8.
i=1 i=1

Initially, the sum of the weights is n; hence after u promotions and v
demotions,

n
Zwi <n+ula—1)0 —v(l —1/a)f.
i=1
Since the weights are never negative, we must have n+u(a—1)8 —v(1—
1/a)f > 0. Thus v(1 —1/a) < 5 +u(a — 1), giving v < %457 + au,

as desired. O
Lemma 8 For all i, w; < af.

PROOF: Since § > 1 and a > 1, the weights are initially less than or
equal to af. For any j, the value of w; is only increased during a trial
in which z; = 1 and Zf w;r; < 0. These conditions can only occur
together if w; < 6 immediately prior to the promotion. Thus w; < o
after the promotion. |

Lemma 9 After u promotion steps and v elimination steps, there ex-
ists some © for which

u—(1—=9)v

———loga.
Zi:l i

ProoOF: We will use the symbols w; per and w;as, as in the proof of

Lemma 7. This time we look at what happens to Z?:l i logw;. We
can write the promotion update rule as

logw; >

Wi aft = Q7 W; pet-
Taking the logarithm and multiplying by u;, we get
Wi log Wi afy = pilog wy per + i log a.

A promotion step only occurs when > © | p;z; > 1. Thus, at a promo-
tion step we have

n n
D milogwias > Y prilog wyper + loga.
i—1 i=1

At a demotion step we have

— i
Wiaft = & Wi bef-

24

Thus
i log Wi are = i 10g Wi et — piw; log a.

For a demotion step to occur, we must have Z?:l wix; <1 —0. Thus,
at a demotion step we have

n n
> milogwian > Y pilogwiper — (1 —6)logav.
i=1 =1

Initially, Z?:l i logw; = 0. After w promotion steps and v demotion
steps, we have

Zuilogwi >uloga — (1 —9d)vloga.
i=1
Since the u; are non-negative, we get
(max logw@ Zu@ > [u—(1-9)v]loga,
i=1

and dividing by > u; gives the desired result. O
PRrooF OF THEOREM 9: From lemmas 8 and 9 we get
—(1-=0)
Z?:l i

Since o > 1 and the u; are non-negative, we can rewrite this inequality
as

loga <loga + log#.

—(1 -0 < (14150

A second inequality involving u — (1 — d)v results from using Lemma 7
to eliminate v from the expression. This gives us

a n
=+ au),

-10

—(1—5)U2u—(1—5)(a

and using the value for « given in the theorem, we get

—(1-8)v > u—(1—6)2_g—6%—(1 5)(1+ g)u = (g+%)u—wg.

Combining the two inequalities involving u — (1 — d)v, we get

§ 6 1-6)(2+d0)n _logf -
S PP Sl A ol S LS
g 5 g <1+ log(1+ ¢ Z“”

25

and therefore

) (1-6)24+0)n log 6
Qu< SO TIN Ly BT)N,
“=) 0+(+10g(1+%))zu

i=1

From Taylor’s formula with remainder, we get

wsyzt G5, o

and since § < 1 we get
0
In(1+ 5) > 30/8.
Thus, since we have assumed that 6 > 1,

6, (L=D@+d)n g
a7
9t = 5 gt 1t 352 Z’“

From Lemma 7, we have a bound on the total number of mistakes:

+v< —— T4 (a+1)
u v — « Uu.
—a-—-1860

Thus

2460 4+82.(0-8)@+dn o
utvs =gt s gt Z“‘]

_ ((2+5)5+(4+6;s)(1—5)(2+5))%+ 4;5 sme Zﬂz

Using 0 < § < 1, we can simplify the upper bound to get

8n 5 14In6
u+v < 29 +(S + T);Hu
as desired. O

For the earlier example involving r-of-k threshold functions, we have
0 = % and YU g = é Thus we get a mistake bound for r-of-k
threshold functions for a = 14 % and 8 = n of 8?2 +5k+14krlnn. We
do not know lower bounds for this concept class which are comparable
to this upper bound. Note that 1-of-k threshold functions are just k-
literal monotone disjunctions. Thus if a« = 3/2, WINNOW2 will learn
monotone disjunctions. The mistake bound is similar to the bound for
WINNOW1, though with larger constants.

26

6 Transformations to other target classes

Various transformations are possible that let one apply the above al-
gorithms to other classes of functions. One can think of these trans-
formations as letting one derive a new learning algorithm from an exist-
ing one. The transformations that we will describe here take the form of
mappings applied to the instances and predictions. If the instance space
of the derived algorithm is X; and that of the original algorithm is Xs,
then the transformations will take the form of functions T; : X1 — X»
and T}, : {0,1} — {0,1}. We will always take T}, to be either the iden-
tity or the function that interchanges 0 and 1 (negation); thus T, will
be invertible. When the derived algorithm receives an instance z € X,
it sends the instance T;(z) to the original algorithm, which generates
the prediction y. The derived algorithm then generates the prediction
T,(y). Finally, to conclude the trial, when a reinforcement is received,
the derived algorithm sends it to the original algorithm. (The rein-
forcement is passed along without transformation since we view it as a
message saying “right” or “wrong” rather than as a message containing
the value of the correct response).

Suppose we start with an original algorithm A and we want to derive
an algorithm to learn some target class C. What we seek is a target
class Cj that can be learned by A and mappings T; and 7}, such that
for every g € C, there exists an f € Cy such that T, 0 foT; = g. We
have the following theorem.

Theorem 10 Suppose we are given transformation T; : X1 — X,
invertible transformation T, : {0,1} — {0,1}, an original algorithm
A that can accept instances from Xo, and a derived algorithm B con-
structed from these as described above. Suppose that we wish algorithm
B to learn a target function g : X; — {0,1}. If f : Xo — {0,1} is a
function that can be learned by A with a bounded number of mistakes,
and if T, o foT; = g, then algorithm B will learn g making at most
Ma(f) mistakes.

PRroOOF: Let y be the prediction that the derived algorithm B makes in
response to some instance z. For algorithm B to make this prediction,
algorithm A must have made the prediction 7,7'(y) in response to
the instance T;(x). We have T, '(y) = f(Ti(z)) if and only if y =
g(z). Algorithm A is told that it has made a mistake when the derived
algorithm makes a mistake. From the above we see that this happens
exactly when the response of A to an instance T;(x) is not equal to
f(Ti(z)). This can happen at most M4(f) times. O

These transformations are similar in effect to the substitutions de-
scribed by Kearns, Li, Pitts, and Valiant (1987a).

27

Now we consider some examples of ways that these transformations
can be used to extend the classes of functions learnable using WiNNOW 1
and WINNOW2. For each example, we show that the transformation
satisfies the condition given in Theorem 10, namely that for any desired
target function g, there exists a function f in a target class that can be
learned by WINNOW1 or WINNOW2 and for which Tj, o foT; = g. Note
that in any case in which we use WINNOW1, WINNOW2 could also be
used.

Example 4 Learning arbitrary disjunctions.

This is an example of one way to learn disjunctions that are not ne-
cessarily monotone. Arbitrary disjunctions are also special cases of the
classes discussed in Examples 6 and 7 below. We will use WiNNOW1,
but the learner does not send the first instances to WINNOW 1. Instead,
the learner just responds 1 until the first mistake is made. This will
be an extra mistake, not counted in the bound for WINNOW1. Then
the learner starts using WINNOWL, using transformations defined as
follows. Suppose (z1,...,2,) is the first instance on which a mistake is
made. Then we let T; : {0,1}" — {0,1}" be the function given by

Ti(x1, - xn) = (X1 + 21, -, Tn + 2n),

where the addition is modulo 2. We let T}, be the identity.
To construct the function f of Theorem 10, write the target function
g as
g(xr, ..., xn) =25 V-V, VI, V---VEj,
for some [and m. Since g(z1,...,2,) = 0 we must have z;; = -+- =
zy =0and 25, =--- =2, =1. Let

flxi,..,zn) =2 V---Va;, Ve, V---Vay .
Then
foTi(z1,...,xn) = &3, V- -V, V(z;, +1)V---V(zj, +1) = g(21,...,Zn),

as desired. The mistake bound for learning non-monotone disjunctions
with this method is one more than the corresponding mistake bound
for monotone disjunctions.

Example 5 Learning k-literal monotone conjunctions.

We use WiNNowl. Let Ti(zy,...,2z,) = (1 —z1,...,1 —z,) and
Ty(r) = 1 —r. If one thinks of 0 and 1 as false and true, then the
transformations T; and 7}, just negate all of their arguments. Thus if
the target function g(x1,...,2,) = x4, -+ x4, (i-e., the conjunction of
these k variables) and if we let f(zy1,...,2n) = @, V -+ V @y, then
Tyo foT; =g by de Morgan’s law. Using WINNOW1 with § = § and
a = 2, the number of mistakes will be bounded by 2k log, n + 2.

28

Example 6 Learning linearly-separable Boolean functions with weights
that vary in sign.
For X C {0,1}" and 0 < § < 1, let G(X,d) be the class of functions
g : X — {0,1} for which there exist vq,...,v, > 0 and oy,...,7, >0
depending on ¢ such that for all (z;,...,z,) € X,
Z(Vixi + (1 — xz)) >1 ifg(xy,...,xn) =1
i=1

and
n

Z(Vi:ni +0i(1—a;)) <1-6 if g(y,...,2,) =0.

i=1
We will first give a transformation to learn G(X,), and then demon-
strate that any linearly-separable Boolean function with domain X is
in G(X,9) for some §. To learn functions in G(X,d), we use WINNOW2
and the transformation T; : {0,1}" — {0,1}*" given by

Ti(mlw";mn) = (551,372,...,33”,1—561,1—372,...,1—33”)-

We let T, be the identity. For any function ¢ € G(X,d) we can find
a function f € F(T;(X),6) for which T}, o f o T; = g, satisfying the
condition of Theorem 10. To define f, let vy,...,v, and ¥y,...,7, be
as above. Let pu; = v; for ¢ = 1,...,n, and let y; = 7;—, for ¢ =
n+1,...,2n. Then the function f that is 1 if and only if 32" pz; >
1 is the desired function. The mistake bound of Theorem 9 applies,
except that n must be replaced with 2n, and the sum 2?21 i with
i (vi + 7).

Now we show that any linearly-separable Boolean function f is in
G(X,0) for some 6. To see this, first observe that the function that is
identically 1 on X isin G(X,1); we can takev; =, = 1fori =1,...,n.
Now take g to be any linearly-separable Boolean function which is not
identically 1. We can find py,..., p,, 8 and 8" < 6 such that for all
(x1,...,2n) € X,

n
> miwi 260 if glar,... wn) =1
=1

and

Z,uixi <¢ ifg(xy,...,zy) =0.
i=1

Here we allow the u; to vary in sign. Now for each i choose ,uj, p; >0
such that u; = uzr — p; and either uzr or p; is 0. Then

n n

> mire = Yok (=) = Do

i=1 i=1

29

Thus

n

Slpfwi+pr(M—2)) >0+ pr i glar,...,) =1
=1 =1
and

n

Sowiwitp W—w)) <0 +> p; ifgla,...,z.) =0.
i=1

i=1
We will next divide each of these inequalities by § + > "1 | u; . Note
that since g is not identically 1, we have
n

n
—u; < min i <0 <.
izzl e .,zn)eXZuz i S

(9017~~ i—1

Hence 0+, pi > 0and 6+ " | ui > 0. We obtain the inequal-
ities

30

n

+
Z Bi T; + 'u’n (I—zy)>1 ifglay,...,zn) =1

i— 6+ Z?:1 My O+ i1k
and
n + - 6’ T
Z ad + s (1-z;) < Ot 2ici b if g(z1, ..

n — T n — > n —
i:19+2i21ui ' 0+ i1 1 0+ i 1y

. 9—0'
Thus ¢ is in G(X, W)
Example 7 Learning k-DNF for fizved k.

This transformation demonstrates the use of WINNOW1 to learn
functions that are not linearly separable. The class k-DNF consists
of functions that can be expressed in disjunctive normal form with at
most k literals per term. Valiant (1985) and Kearns et al. (1987a) have

studied this class. To learn k-DNF, we let ny = > 2¢("). Let

Ti(xla"'axn) = (cl(xl,...,xn),CQ(xl,...,xn),...,an(m,...,xn))

where the ¢;(z1,...,z,) range over all conjunctions that form valid
terms of a k-DNF formula, i.e., all conjunctions of no more than k
literals. We let T}, be the identity. For any k-DNF target function g with
[terms, there exist iy,...,% such that g(z1,...,x,) is the disjunction
of ¢ (x1,..-,@pn),---, ciy(x1,...,mp). Let f: {0,1}" — {0,1} be
defined by f(y1,...,Uny) =¥i, V---Vy;,. Then g = f o T; as desired.
One can show that ny < (2n)*+1. To WINNOWL, it will appear that
the function being learned is an [-literal monotone disjunction. Thus
if the target concept has [terms, WINNOW1 will make O(llognF) =
O(kllogn) mistakes. By contrast, the algorithm for learning k-DNF
and similar classes presented by Valiant (1984, 1985) can be forced to
make (Z) — I mistakes, which is roughly n* mistakes when [is small.
Lemma 6 gives a lower bound on the Vapnik-Chervonenkis dimension
of the class of [-term k-DNF formulas. This is also a lower bound on
the mistake bound. In that lower bound, take m = [kI'/*¥]. We have

my mt
k)= =D

as required. Thus a lower bound on the mistake bound, in the case that
EIME <, is
kl|logy ——|.
g2 |'kll/k'|
If we know [and run WINNOW1 with @ = 2 and ¢ = 37, then the
number of mistakes made by the derived algorithm will be bounded by

(2n)* +1 (2n)*

20(1 +1
(1 + log, i i

) < 21(2 + log,

2n

31

L, xy) =0.

For fixed k, this is similar in form to the lower bound.

32

7 Conclusion

This paper divides into two parts. The first part contains general res-
ults about how many mistakes an effective learner might make if com-
putational complexity were not an issue. The second portion describes
an efficient algorithm for learning specific target classes. The general
results of the first part lead to the inequalities:

VCdim(C) < opt(C) < Muarving(C) < logy,(|C))

for any non-empty target class C'. Examples in Section 3 demonstrate
that VCdim/(C) can be 1 for classes for which opt(C) is large, and
that Mparving(C) can be 1 for classes for which log,(|C]) is large.
Example 2 also shows that opt and My arving can differ. There also
exist classes C' for which VCdim(C) = log,(|C|), making all of the
above inequalities into equalities. (This is true of any class that contains
exactly those concepts required to shatter some particular finite subset
of the domain.)

When we turn to efficient algorithms, we find that WINNOW1, WIN-
NOW2, and their transformations do very well for certain concept classes.
These include disjunctions, conjunctions, r-of-k threshold functions,
other classes of linearly-separable functions with sufficiently large sep-
aration, and some classes of non-linearly-separable functions, such as
k-DNF for fixed small k.

The results here contrast with those of Kearns et al. (1987a), who
have demonstrated that if P # NP and if the learner is required to
choose hypotheses from the target class, then r-of-k threshold func-
tions are not polynomially learnable in the Valiant learning model. Us-
ing methods that we mentioned in Section 3, WINNOW2 (which learns
r-of-k threshold functions) can be converted into a polynomial learning
algorithm in the Valiant model. This algorithm succeeds in efficiently
learning r-of-k threshold functions by choosing hypotheses from a lar-
ger class of Boolean functions. WINNOW1 and WINNOW2 are natural
algorithms for parallel implementation; Slade (1987) has implemented
WINNOW on the Connection Machine.

A key advantage of WINNOW1 and WINNOW?2 is their performance
when few attributes are relevant. If we define the number of relevant
variables needed to express a function in the class F'({0,1}", 0) to be the
least number of strictly positive weights needed to describe a separating
hyperplane, then the bounds for WINNOW1 and WINNOW2 tell us that
the target class F'({0,1}",9) for n > 1 can be learned with a number of
mistakes bounded by a constant times %g—n when the target function
can be expressed with k relevant variables. (This follows from the
bound given in Theorem 9 using the observation that, in the inequalities

33

(1) and (2) in the definition of F'(X,J), any p; larger than 1 can be set
to 1 without changing the function.)

Note that WINNOW1 (for the target class F(X,1)) and WINNOW2
achieve this bound without necessarily producing a hypothesis expressed
with few significant weights. For example, if several attributes match
each other in every instance, then their weights will always match, and
a hypothesis making significant use of any of them will make use of all.

One theme that recurs in this paper is transformation from one
algorithm to another. We have discussed transformations of several
kinds, including;:

e transformations from algorithms for one target class to algorithms
for another target class;

e transformations between mistake-bounded algorithms and query
algorithms;

e transformations from mistake-bounded algorithms to algorithms
that provably perform well in a probabilistic learning model;

e transformations from arbitrary mistake-bounded algorithms to “nor-

malized” mistake-bounded algorithms (e.g., the transformation to a
conservative algorithm).
Transformations can also be used with the hope of improving the beha-
vior of an algorithm for a target class it is already capable of learning.
In this regard, notice that monotone conjunctions can be learned by
WINNOW2 with or without the use of the transformation described in
Example 5. A k-literal monotone conjunction is just a k-of-k threshold
function. Using WINNOW?2 to learn a k-of-k threshold function, we have
a mistake bound of 5k + (8 + 14Inn)k?, which applies when o = 1+ %
and 6 = n. If we use the transformation of Example 5, we end up using
WINNOW2 to learn a derived 1-of-k threshold function. In this case,
the mistake bound is 8 + (5 4+ 14Inn)k with o = 2 and 6 = n, which
is better by a factor of k£ than the bound without the transformation.
It is not clear to what extent this difference is an artifact of our ana-
lysis. However, note that to express a l-of-k threshold function, any
set of weights will work, as long as the weight of each relevant variable
is above the threshold and the sum of all other weights is below the
threshold. There are tighter constraints on weights used to represent a
k-of-k threshold function. The sum of all weights, omitting only that of
any single relevant variable, must be below the threshold, whereas the
weights of the relevant variables must have a sum above the threshold.
This suggests that a k-of-k threshold function might indeed be harder
for WINNOW2 to learn than a 1-of-k threshold function.

Though we have shown that WINNOW?2 is within a constant factor
of optimal for some classes of functions, the ratio of the mistake bound
to the optimum grows as 0 shrinks. The number of linearly-separable
Boolean functions of n attributes is at most 2" for n > 1 (Blumer

34

et al., 1987a; Muroga, 1971). Thus the halving algorithm would make
no more than n? mistakes learning any such function. The bound
for WINNOW2 grows in proportion to 1/§2, and there exist classes for
which 1/6 grows exponentially with n. Are there efficient algorithms
that close this gap?

One advantage of WINNOW1 and WINNOW? is that they perform
well for functions with few relevant attributes without needing to know
the number of relevant attributes in advance. This is not true with
respect to the separation parameter ¢, which affects the choice of the
multiplier used by WINNOW2. For practical problems, it would be use-
ful to have a version of WINNOW2 that could function without needing
to know 4.

We have mentioned that any mistake-bounded algorithm can be
transformed into an algorithm that provably performs well in a prob-
abilistic learning model. One can also run a mistake-bounded algorithm
without transformation but assume that the instances are chosen ran-
domly, and then examine its behavior in probabilistic terms. It would
be interesting to understand the behavior of WiNNOW1 and WINNOW2
in such a setting.

Finally, when the input data to the learner contains errors, WIN-
NOWL1 is not robust: if a weight is mistakenly set to zero, the mistake
will never be undone. WINNOW2 can learn all concept classes learn-
able by WINNOW1, and it is more robust. We are currently studying
its performance when there are errors in the input data.

Acknowledgements

This research was supported by Contract N00014-86-K-0454 from
the Office of Naval Research. I would like to acknowledge the inspir-
ation provided by many valuable discussions with David Haussler and
Manfred Warmuth, and by the many key questions that they asked.
I also benefited from discussions with Sally Floyd, Ron Rivest, Dana
Angluin, and Eli Upfal. Dick Karp raised the question of lower bounds
for learning monotone disjunctions, and Larry Stockmeyer and Manfred
Warmuth subsequently developed ideas relating to these lower bounds.
Mike Paterson and Manfred Warmuth suggested improvements to the
upper bounds. Ideas leading to complete k-mistake trees were worked
out in conjunction with David Haussler. Pat Langley made valuable
suggestions for improving the presentation of the results.

References

Angluin, D. (1987). Queries and concept learning. Machine Learning,
2, 319-342.

Angluin, D., & Smith, C. H. (1983). Inductive inference: Theory and
methods. Computing Surveys, 15, 237-269.

35

Banerji, R. B. (1985). The logic of learning: A basis for pattern re-
cognition and for improvement of performance. Advances in Com-
puters, 24, 177-216.

Barzdin, J. M., & Freivald, R. V. (1972). Oun the prediction of general
recursive functions. Soviet Mathematics Doklady, 13, 1224-1228.

Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. (1987a).
Learnability and the Vapnik-Chervonenkis dimension (Technical
Report USCS-CRL-87-20). Santa Cruz: University of California,
Computer Research Laboratory.

Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. (1987b).
Occam’s Razor. Information Processing Letters, 24, 377-380.
Duda, R. O., & Hart, P. E. (1973). Pattern classification and scene

analysis. New York: John Wiley.

Hampson, S. E., & Volper, D. J. (1986). Linear function neurons:
Structure and training. Biological Cybernetics, 53, 203-217.
Haussler, D. (1985). Space efficient learning algorithms. Unpublished
manuscript, University of California, Department of Computer and

Information Sciences, Santa Cruz.

Haussler, D. (1986). Quantifying the inductive bias in concept learn-
ing. Proceedings of the Fifth National Conference on Artificial
Intelligence (pp. 485—489). Philadelphia, PA: Morgan Kaufmann.

Haussler, D., Littlestone, N., & Warmuth, M. (1987). Predicting 0,1-
functions on randomly drawn points. Unpublished manuscript,
University of California, Department of Computer and Information
Sciences, Santa Cruz.

Kearns, M., Li, M., Pitt, L., & Valiant, L. (1987a). On the learnability
of Boolean formulae. Proceedings of the Nineteenth Annual ACM
Symposium on Theory of Computing (pp. 285-295). New York:
The Association for Computing Machinery.

Kearns, M., Li, M., Pitt, L., & Valiant, L. G. (1987b). Recent results
on Boolean concept learning. Proceedings of the Fourth Interna-
tional Workshop on Machine Learning (pp. 337-352). Irvine, CA:
Morgan Kaufmann.

Mitchell, T. M. (1982). Generalization as search. Artificial Intelli-
gence, 18, 203-226.

Muroga, S. (1971). Threshold logic and its applications. New York:
John Wiley.

Nilsson, N. J. (1965). Learning machines. New York: McGraw-Hill.

Rumelhart, D. E., & McClelland, J. L. (1986). Parallel distributed
processing: Explorations in the microstructure of cognition. Cam-
bridge, MA: MIT Press.

Slade, S. (1987). The programmer’s guide to the Connection Machine
(Technical Report). New Haven, CT: Yale University, Department
of Computer Science.

36

Valiant, L. G. (1984). A theory of the learnable. Communications of
the ACM, 27, 1134-1142.

Valiant, L. G. (1985). Learning disjunctions of conjunctions. Pro-
ceedings of the Ninth International Joint Conference on Artificial
Intelligence (pp. 560-566). Los Angeles, CA: Morgan Kaufmann.

Vapnik, V. N. (1982). Estimation of dependencies based on empirical
data. New York: Springer-Verlag.

Vapnik, V. N.; & Chervonenkis, A. (1971). On the uniform convergence
of relative frequencies of events to their probabilities. Theory of
Probability and its Applications, 16, 264—-280.

37

