
Basics of probability for COMS 4252

Fall 2023

The basic notions discussed in this brief note are

• sample spaces;

• probability distributions;

• events, compound events, and independence;

• random variables, expectation, and linearity of expectation.

This note is highly informal and contains only the absolute basics about these topics.

1 Sample spaces

A sample space S is the set of all possible outcomes of some “probabilistic experiment.” The notion
of a probabilistic experiment and its corresponding sample space may be best illustrated through
some concrete examples:

1. Example 1: One probabilistic experiment would be “Pick a uniform random person from
the entire Earth’s population as of midnight EST on Jan 1 2023.” For this probabilistic
experiment, the sample space S would simply be the set of all living people on Earth at
midnight EST on Jan 1 2023.

2. Example 2: A different probabilistic experiment (closer to our concerns in COMS 4252)
would be “Choose a uniform random n-bit string.” In this case the sample space S would be
the set S = {0, 1}n.

3. Example 3: A third probabilistic experiment would be “Choose a random number between
1 and n where each number is i chosen with probability proportional to i2.” In this case the
sample space S would be the set [n] = {1, . . . , n}.

4. Example 4: Finally, a fourth probabilistic experiment, relevant to a PAC setting, would
be “Draw a sample of m i.i.d. labeled examples from the example oracle EX(c,D)” where
c is some concept mapping X to {0, 1} and D is some probability distribution over X. In
this case, the sample space S (set of all possible outcomes) would be the set of all possible
m-tuples, where each of the m elements of the m-tuple is itself a pair belonging to X×{0, 1}:
i.e. a possible outcome is of the form

((x1, b1), . . . , (xm, bm))

where xi is the i-th sample point drawn from X according to D, and bi is c(xi), the label bit
that c assigns to the point xi.
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2 Probability distributions

To keep things simple, in the following discussion we’ll confine ourselves to finite sample spaces,
in which there are only finitely many points in S. In this case a probability distribution D over
S is defined by a probability weight D(s) associated with each outcome s ∈ S. These probability
weights must be nonnegative (they can be zero) and they must sum to 1; thus we have

D(s) ≥ 0 for all s ∈ S and
∑
s∈S
D(s) = 1.

A probabilistic experiment naturally corresponds to a probability distribution over the relevant
sample space. Returning to Example (1.) from above, for each person s in the world we would
have D(s) = 1/N where N is the total number of people in the world. For Example (2.), we would

have D(x) = 1
2n for each x ∈ {0, 1}n. For Example (3.), since

∑n
i=1 i

2 = n(n+1)(2n+1)
6 , we would

have D(i) = i2

n(n+1)(2n+1)/6 for each i ∈ [n]. The intuition to have in mind is that we pick a random
element of the sample space S according to D.

Of course, not all probability distributions need to put equal weights on all possible outcomes
(think about a “loaded die” which is biased to come up 6 more likely than any of 1, 2, 3, 4, 5). When
a distribution puts equal weight on all points a finite the sample space S we say it is the uniform
distribution over S. Examples (1.) and (2.) above correspond to uniform distributions.

Instead of writing D(x) to denote the probability of outcome x ∈ S, we sometimes write PrD[x]
or just Pr[x] if the distribution D is clear from the context.

3 Events, compound events and independence

An event is a subset A ⊆ S of the sample space. In the case where S is finite, the probability
of an event A under distribution D over S is simply PrD[A] =

∑
s∈A PrD[s]. (Think of an event

as “something that either does or doesn’t happen” when the probabilistic experiment takes place,
i.e. when a random s ∈ S is drawn according to D.)

For Example (1.) above, one event would be the subset of human beings who are Columbia
University student; the probability of this event would be the probability that a randomly selected
person is a Columbia University student (and since the distribution is uniform, this would be equal
to the fraction of all people in the world who are Columbia University students). For Example (2.),
one event would be the set of all n-bit strings with exactly n/2 many ones (say that n is even here);
since there are

(
n

n/2

)
elements in this set and the distribution is uniform, the probability of this

event (i.e. the probability that a uniform random n-bit string has exactly half of its coordinates 1
and exactly half 0) would be

(
n

n/2

)
/2n, which is Θ(1/

√
n) by Stirling’s approximation. For Example

(3.), one event would be the set {1, 2}; if n = 6, then for this event A under the distribution D
described above we would have Pr[A] = 12+22

12+···+62
= 5

91 .
Given two events A,B ⊆ S, the compound event corresponding to A and B is written A∧B or

A ∩B; its probability is

Pr[A ∧B] =
∑

s∈A∩B
Pr[s].

(As mentioned above, sometimes it’s more natural to think of an event A as “a condition that
may or may not be satisfied when a random s is drawn from D.” The notation A ∧ B captures
this; its intuitive meaning is that when s is drawn, it satisfies both condition A and condition B.
In the context of Example (1.), A might be that a randomly selected person has brown hair, and
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B might be that a randomly selected person is a Columbia University student; A ∧ B would be
the condition that a randomly selected person is a brown-haired Columbia University student. A
more formal take on the situation is that A is a subset of people, namely the set of brown-haired
people, and B is another subset of people, namely the set of Columbia University students, and
consequently A ∩ B is the intersection of these two subsets, namely the set of all brown-haired
Columbia University students.)

We have that

Pr[A ∧B] = Pr[A|B] · Pr[B], where Pr[A|B] =

∑
s∈A∩B Pr[s]∑
s∈B Pr[s]

=
Pr[A ∧B]

Pr[B]
. (1)

Pr[A|B] is the conditional probability of A given B. In Example (2.), we might have that A is the
set of all n-bit strings with an even number of 1’s and B is the set of all n-bit strings that have
their first three bits all being 1; then Pr[A|B] would be the fraction of all n-bit strings of the form
111∗n−3 that have an even number of 1’s.

An easy consequence of Equation (1) is the following:

Pr[A] =

“law of total probability”︷ ︸︸ ︷
Pr[A ∧B] + Pr[A ∧B] ≤ Pr[B] + Pr[A|B] Pr[B] ≤ Pr[B] + Pr[A|B];

we will use this on several occasions.
Events A,B are said to be independent if Pr[A ∧ B] = Pr[A] · Pr[B]. Let’s return to Example

(2.), where again the probabilistic experiment is drawing a uniform n-bit string (call it x). Are the
events A and B described above independent? (Yes, assuming n > 3; think about why. . . ). Let C
be the event “at least half of the bits in x are 1.” Are events B and C independent? (No; again,
think about why. . . )

Intuitively, independence between events is very powerful and useful because “independent
repetitions of a random experiment drives probabilities down very fast” — if we perform a random
experiment which has “success probability” p independently k times, the probability that all k
occurrences result in success is only pk. (Note that if the original sample space for a probabilistic
experiment is S, then the sample space corresponding to k executions of the probabilistic experiment
is Sk, the set of all k-tuples of elements of S.)

4 Random variables, expectation, and linearity of expectation.

Given a sample space S and a distribution D over S, a random variable is a function X from S to
R. In the context of Example (1.), one possible random variable would be the function which, on
input a person on Earth, outputs their height in centimeters. In Example (3.), one possible random
variable would be the function X(s) = 3s + 4.

The expectation of a random variable X is “the average value it takes over a random draw from
D”; more precisely, it is

E[X] :=
∑
s∈S

X(s)D(s) =
∑
a

a · Pr[X = a].

Returning to the random variable X described above for Example (1.), E[x] would just be
the average height in centimeters of a random person on earth. In Example (3.), with n = 3 (so
S = {1, 2, 3}) we would have

E[X] = (3 · 1 + 4) · 12

12 + 22 + 32
+ (3 · 2 + 4) · 22

12 + 22 + 32
+ (3 · 3 + 4) · 32

12 + 22 + 32
.
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The most important thing to know about expectation is the principle of linearity of expectation.
This says that given any collection of random variables X1, . . . , Xt over a sample space S, whether
or not they are independent we have

E[X1 + · · ·+ Xt] = E[X1] + · · ·+ E[Xt]

(think about why this is true!) This principle can often simplify your life; for example, consider
Example (2.) where the random variable X is the number of 1’s in a uniformly random n-bit string.
What is E[X]? A direct application of the definition of expectation gives

E[X] =
n∑

i=0

i ·
(
n
i

)
2n

,

(since a uniform random n-bit string has i ones with probability
(
n
i

)
/2n). It can be shown that this

evaluates to n/2, but linearity of expectation makes this very easy to see: we have X = X1+· · ·+Xn

where Xi is 1 if the i-th bit of the string is 1. Applying linearity of expectation we get that

E[X] = E[X1 + · · ·+ Xn] = E[X1] + · · ·+ E[Xn] = n · (1/2)

since each of the n random variables Xi has E[Xi] = 1/2.
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