Last time: Proper vs Improper learning
(improperly learning
3-term DNF is computationally easy, but properly learning
3-term DNF is computationally hard)

Today: Start unit on sample complexity of PAC learning (VC Dimension)
- lower bound on \(D \left(\frac{\text{vc}(e)}{e} \right) \)
- start upper bound on \(\Theta \left(\frac{\text{vc}(e)}{e} \right) \)

Reminder: midterm Thurs (cover stuff thru Thurs 10/18)

Questions?

Sample Cxity of PAC Learning

\(C = \) a conc. class. Basic PAC questions:
1) is \(C \) PAC learnable? (by some alg. w/ fixed finite s.c.?)
2) if so, how many ex. needed?

Suppose \(C \) finite. Get (half) answer from CHF thus:
\(\frac{1}{\varepsilon} (1/\ell 1/\ell + 1/n/\ell) \)

ex. suffice. lub.
- what about a lower bound?
What if C infinite?

$\text{VC}(C)$ completely answers all the above φ's.

Quick overview of results: Fix C. Let $d = \text{VC}(C)$.

1. Any PAC learner for C must use $\Omega\left(\frac{d}{\varepsilon} + \frac{1}{\varepsilon}\ln \frac{1}{\delta}\right)$ examples.

2. If d finite, any CHF for C using C as hyp. is a PAC learner if run on \mathcal{H}

$$m \gtrsim \frac{1}{\varepsilon} \cdot d \cdot \log \left(\frac{1}{\varepsilon}\right) + \frac{1}{\varepsilon} \log \frac{1}{\delta}$$ examples.

Analogue of our CHF thm for ω concept classes;

$\text{VC}(C)$ plays role of $\ln |\mathcal{H}|$.

Today: 😊, start 😃

Lower bd. on s.c. of PAC learning

Thm: Fix c.c. C. Let $d = \text{VC}(C)$.

Any PAC learning alg. for C that learns to acc. ε, conf. $\delta = \frac{1}{10}$, must use $\Omega\left(\frac{d}{\varepsilon}\right)$ ex. for some φ.

}\]
Pf: First: warm-up: a first need \(\Omega(d) \) ex.

- to achieve \(\varepsilon = \frac{1}{8}, \delta = \frac{1}{8} \) \(\Rightarrow \) \(\{x_1, \ldots, x_d\} \)
- let \(S \subseteq X \), \(|S| = d \), \(S \) shatter by \(C \).
- let \(\mathcal{D} \) be uniform on \(S \) (\(\forall \) prob. each \(x \in S \))
- zero prob. wt. off \(S \).

Let \(A \) be a purported learner that makes only \(\frac{d}{2} \) calls to \(E_X(c, \Psi) \). After these calls, \(A \) "knows" labels of \(\leq \frac{d}{2} \) pts in \(S \).

Let target \(c \in C \) be chosen uniform from the \(2^d \) concepts in \(C \) that shatter \(S \).

(So label of \(x_i \) under \(c \) is indep \(\& \).

So for each \(x_i \) not "seen" in \(\frac{d}{2} \) pt sample,
\(c(x_i) \) is indep \(\& \).

So...
\[
\mathbb{E}[\text{error of learner's } h] \geq \frac{d}{2} \cdot \frac{1}{2} \cdot \frac{1}{d} = \frac{1}{4}.
\]

Let \(\text{acc}(h) = 1 - \text{error}(h) \)

Pr.v.:

\[
\text{acc}(h) \leq 1
\]

\[
\mathbb{E} [\text{acc}(h)] \leq \frac{3}{4} \quad \Rightarrow \quad \frac{3}{4} = \frac{7}{6} \cdot \frac{3}{4}
\]

Markov:

\[
\Pr\{\text{acc}(h) \geq \frac{7}{8}\} \leq \frac{1}{4}.
\]

So

\[
\Pr\{\text{error}(h) \leq \frac{1}{8}\} \geq \frac{1}{4}.
\]

So this is not meeting the PAC crit. for
\(\varepsilon = \delta = \frac{1}{8} \). (can't be true that \(\forall c \), \(\text{acc}(h) \leq \frac{7}{8} \) error(\(h \leq \frac{1}{8} \))

\(\checkmark \) Done w. warm-up.
Real thing: a $\Omega(\frac{d}{\epsilon})$ ex.

Again $S = \{x'_1, \ldots, x'_d\}$ is shattered.

Now let \mathcal{Y} be:

- $1 - 8\epsilon$ w.t. on x^d
- $\frac{8\epsilon}{d-1}$ w.t. on x'^1, \ldots, x'^{d-1}

Suppose \ast A's calls to $\text{EX}(c, \mathcal{Y})$ yield only $\frac{d-1}{2}$ occasions when we get one of:

Let $c \in C$ (target) be u.i.f. over a set of 2^{d-1} concepts labeling x'_1, \ldots, x'^{d-1} in all ways.

Same arg. as before: assuming \ast, w.p. $\geq 1/8$

by p h has error rate $\frac{\epsilon}{8}$ on x'_1, \ldots, x'^{d-1}. These have 8ϵ mass under $\mathcal{Y} \Rightarrow h$ has overall error $\geq \epsilon$ under \mathcal{Y} w.p. $\geq 1/8$.

Let $m = \frac{1}{32} \cdot \frac{d-1}{\epsilon}$.

Each call to EX hits one of x'_1, \ldots, x'^{d-1} w.p. 8ϵ.

$E[\# \text{hits}] = 8\epsilon \cdot m = \frac{d-1}{4}$.

Mult. CB ($\gamma = 1$, $p = \epsilon$, $p^{1/m} = \frac{d-1}{4}$):

$\Pr[\# \text{hits} \geq 8\epsilon \cdot m] \leq e^{-\frac{d-1}{12}}$.

Can assume $d \geq 100$ (asympt. statement), so

$e^{-\frac{d-1}{12}} \ll \frac{1}{100}$.

So w.p. $\geq \frac{99}{100}$, \ast holds: so

w.p. $\geq \frac{99}{100}$ have $\geq \frac{1}{\epsilon}$ chance h is bad.
So w.p. \(\geq 0.99 \cdot \frac{1}{2} \) \((> \frac{1}{10}) \),
\(h \) is bad.

It's not hard to show \(\sigma_2 \left(\frac{1 - (\delta)}{\epsilon} \right) \) \(\delta \)-b.i., for general \(\delta \).

Upper Bound on S.C. of PAC Learning.

Goal: \(\forall \mathcal{D}, \forall h \in \mathcal{C} \) that's cons. with
\(\approx \frac{1}{\epsilon} \cdot d + \frac{1}{\epsilon} \cdot \log \frac{1}{\delta} \)
random ex. from \(\mathcal{D} \) is \(\epsilon \)-good w.p. \(1 - \delta \).

Proof has 3 main conceptual components.

1. **Setup:** Ponder \(V C(\mathcal{C}) \leq a \). We'll consider a function ("growth function" of \(\mathcal{C} \)) that'll give us more info than just \(V C(\mathcal{C}) \).

2. **Combinatorics result:** Amazing theorem about growth function.

3. **Learning / prob. argument** (like CHF Theorem, but more sophisticated), using amazing theorem.
1. Setup

\(X = \text{domain} \quad \mathcal{C} = \text{cc. over } X \)
\(d = \text{VC}(\mathcal{C}) = \text{size of largest } S \subseteq X \text{ s.t. } S \text{ shatter } \mathcal{C} \)

Fix \(S \).

Def: \(\mathbb{T}_e(S) = \text{set of all labelings of } S \)
induced by concepts in \(\mathcal{C} \).
\(\mathbb{T}_e(S) = \{ c \cap S : c \in \mathcal{C} \} \)
both subsets of \(X \)
coll. of sets

Recall \(\text{VC}(\mathcal{C}) = 2 \) for \(a, b, c \).

Ex: \(X = \mathbb{R}, \mathcal{C} = \text{all intervals}, S = \{1, 2, 3\} \).
\(\mathbb{T}_e(S) = \{ \emptyset, \{1\}, \{2\}, \{3\}, \{12\}, \{23\}, \{123\} \} \)

Have \(\mathcal{C} \) shatters \(S \) iff \(|\mathbb{T}_e(S)| = 2^{|S|} \).

So
\(\text{VC}(\mathcal{C}) = \text{max value } d \text{ s.t. } \exists S \subseteq X, |S| = d, \)
with \(|\mathbb{T}_e(S)| = 2^d \).

Def: The growth function \(\mathbb{T}_e(m) \) is
\(\mathbb{T}_e(m) = \text{max value of } |\mathbb{T}_e(S)| \)
over all \(S \subseteq X, |S| = m \).

"max # of dichotomies \(\mathcal{C} \) can induce on any \(m \)-set"
Back to same ex:
\(C = \text{intervals} \)

\[
\begin{align*}
\Pi_C(0) &= 1; & \Pi_C(1) &= 2; & \Pi_C(2) &= 4; \\
\Pi_C(3) &= 7; & \text{in general,} \\
\Pi_C(m) &= O(m^2) \\
\end{align*}
\]

3 Amazing Theorem:
Fix any \(C \) w/ \(VC(C) = d \).
Then
\[
\begin{align*}
\Pi_C(m) &= 2^m \quad \text{if } m \leq d \\
\Pi_C(m) &\leq \left(\frac{em}{d} \right)^d \quad \text{if } m > d.
\end{align*}
\]

\(e = 2.718 \ldots \)

\(\text{polynomial (deg } d) \)!