Last Time:
- LTFs
- OLMC model
- Elimination alg. for monotone disj. variants
- 1-Decision lists

Today:
- OLMC learning alg. for 1-decision lists
- Winnow 1 alg. for sparse monotone disj. (hopefully)
- Winnow 2 alg. for (certain) other LTFs

Back to 1-OLs of length r:
- seq. of r "standard" rules,
- one "default rule"

if T output 0 \implies 2 poss.

4n rules total.

\# of length-r 1-OL over \{0,1\}:
\approx (4n)^r \cdot 2

OLMC Alg. to learn length-r 1-OLs over \{0,1\} with \leq O(nr) mistake bound.

[Always r \leq n, so \leq O(n^2).]
Alg. uses hypotheses which are slight variant of 1-DL:

- hyp. always contains all $4n+2$ rules;
- rules are grouped into levels; each level can have multiple rules. Think of rules within a level as being arranged in lexicographic order.

Alg:

Initially h has one level \forall all $4n+2$ rules

\[
\begin{array}{cccc}
 x_1 & \rightarrow & x_2 & \rightarrow \\
 \boxed{0} & \uparrow & \boxed{0} & \uparrow \\
 \boxed{0} & \uparrow & \boxed{1} & \uparrow \\
 \boxed{0} & \downarrow & \boxed{1} & \\
\end{array}
\]

level 1

* Given x: look at level 1 rules, then """""", etc.

Within a level, look thru rules in lex order, looking for first rule whose "if" cond. is satisfied by x.

Use that rule to predict.

(If no rule in current level applies, look at next level).

or example $x \Rightarrow y$?

- Update rule: You use a partic. rule in a partic. level for prediction.

 \[
 \begin{array}{c}
 \downarrow \\
 b
 \end{array}
 \]

- if pred. was right: no change.

 \[
 \begin{array}{c}
 \downarrow \\
 b
 \end{array}
 \]

- if pred. wrong move the
Rule that was just used down to next level.

Ex: initially hyp. is \(x_1 \rightarrow x_1 \rightarrow \overline{x}_1 \rightarrow \overline{x}_1 \rightarrow x_2 \ldots \rightarrow 0 \)

Get ex. \(z = 010\ldots \); \(c(z) = 1 \)

\(h(z) = 0 \) move rule \(\overline{x}_i \)

To level 2.

Next hyp:

\(\overline{x}_i \rightarrow x_1 \rightarrow \overline{x}_1 \rightarrow x_2 \ldots \rightarrow \overline{x}_i \rightarrow 0 \)

Thm: The above alg. makes \(O(n^r) \) mistakes when target \(c \) is any 1-DC of length \(r \) over \(\{0,1\} \).

PF: Let \(c = \text{target concept} \)

\(\cdots \rightarrow \ell_r \rightarrow b_{r+1} \)

Claim: first rule in \(c \) never moved below level 1 rule by our alg. if \(\ell \) holds, output is \(b \) so never applies.
Claim 2: 2nd rule in c never moved below level 2: to get pushed to level 3, rule would have to be in level 2 & be 1st rule in hyp whose "if" case applies. Says 1st rule is in level 2; it didn't apply & did apply, so true output value of c on that ex. is b2. So 2nd rule wouldn't have caused a mistake.

Claim i: ith rule in c never moved below level i: same reasoning (if it's in level i & it fires, its pred. is correct.)

So... no rule in c (including final \(\rightarrow b_{r+1} \) rule) will ever be moved below level r+1.

Hence no rule at all will ever be moved below level r+2: for every i, same rule in c (could be \(\rightarrow \)) will apply no deeper than level r+1.

Each mistake moves a rule down a level.

So... each of \(\leq (4n+2) \) rules moves \(\leq (r+1) \) levels, so tot. # mistakes \(\leq (4n+2) \cdot (r+1) = O(nr) \).
Note: comp. efficient: poly(n) time per trial.

Learning sparse disjunctions: Winnow 1.

Recall elim. alg: mist. bound \(\leq n \) for \(C = \{ \text{mon. disj.} \} \).

Suppose target \(c \) is sparse: only has \(k \leq k \) many vars. E.g., \(n \geq 10^5 \)
\[k = 4 \] need \(n \) mistakes...?

\(C = \{ \text{all } k\text{-sparse mon. disj.} \} \)
\[c \in C : \quad c(x) = x_{2416} \lor x_{9998} \lor x_{1144} \lor x_{76543} \]

"Very relevant for real-world learning:
most features are irrelevant, we don’t want to "pay" much for them."

Winnow alg: learns with \(O(\sqrt{k} \log n) \) m.b.

Much better than elim. alg. for small \(k \).

\(\Rightarrow \) Winnow uses a hyp. which is an LTF over \(\{0,1\}^n \):

\[h(x) = \begin{cases} 1 & \text{if } w_1 x_1 + \cdots + w_n x_n \geq \theta \\ 0 & \text{if } w_1 x_1 + \cdots + w_n x_n < \theta \end{cases} \]
Q: can LTFs express disjunctions?

Yes: \(x_1, \ldots, x_n \in \{0, 1\} \).

Here are some LTFs:

- \(x_1 + \ldots + x_k \geq \frac{1}{2} \): holds iff \(x_1, x_2, \ldots, x_k \) holds
- \(x_1 + \ldots + x_k \geq k - \frac{1}{2} \): holds iff \(x_1, x_2, \ldots, x_k \) holds

\[x_1 + \ldots + x_k \geq r \]: "r-out-of-k" threshold fn.

\[r = \frac{k}{2} \]: MAJORITY function.

- Any 1-DL can be expressed as an LTF (hint: use different wts for diff vars in DL...)

Winnow: here's Winnow 1 (good for mon. disj.)

Winnow 1 abg: \(\{0, 1\}^n \)

- Initial hyp \(h(x) \) is \(w \cdot x \geq \Theta \) where
\[\theta = n, \quad \mathbf{w} = (1, \ldots, 1) \quad \forall i = 1, \ldots, n. \]

- Predict using \(h(x) \)
- On false pos \((h(x) = 1, c(x) = 0) \): for all \(i \) s.t. \(z_i = 1 \), set \(w_i = 0 \). (demotion step)
- On false neg \((h(x) = 0, c(x) = 1) \): for all \(i \) s.t. \(z_i = 1 \), set \(w_i = 2 \cdot w_i \). (promotion step)
- If \(h(x) = c(x) \), keep \(h \) same.

Makes sense: we know those \(x_i \)'s not in \(c \).

\(\vdash \) wish we had \(w \cdot z \geq \theta \), but had \(w \cdot c < \theta \); makes sense to increase \(w \).

Lemma:
1. No \(w \cdot i \) is ever \(< 0 \) \(\checkmark \)
2. In each promotion step, at least one variable in \(c \) is promoted. \(\checkmark \)
3. For every \(i = 1, \ldots, n \), have \(w \cdot c \leq 2n. \)

Pf: A \(w \cdot i \) is only promoted if \(i \) is \(< n \). (if \(n \cdot z + z = 1 \), \(w \cdot z \) would be \(2n \) already, so \(h(x) = 1 \) \(\neq n \) wouldn't promote.)
Lemma 2: Total \# prom. steps, for any K-sparse mon. disj., is \(\leq k \cdot \log(2n) \).

Pf: if demotion happens, no \(x_i \) in \(c \) had \(x_i = 1 \).
So vars in \(c \) never demoted.
Each var. in \(c \) doubles \(\leq \log(2n) \) times before \(\hat{w} \) exceeds \(2n \), so there are \(\leq k \) vars in \(c \).
Each prom. doubles \(\hat{w} \) of at least one var.
So \(\leq k \cdot \log(2n) \) prom. in total.

Lemma: Let \(d = \# \) demotion steps.
Have \(d \leq p + 1 \).

Pf: Let \(\hat{w} = \sum_{i=1}^{n} w_i \). Initially \(\hat{w} = n \).

• At each demotion step, have
 \[\hat{w} \cdot 2 = \sum_{i=1}^{n} w_i \cdot 2; = \sum_{i: \hat{w}_i \geq n} w_i \geq n, \] and set all
 these to 0;
 \(\hat{w} \) decreases by at least \(n \).

• At each promot. step, have
 b/c bad prom.
\[w \cdot z = \sum_{i=1}^{n} w_i z_i = \sum_{i:z_i=1} w_i < \underbrace{n}, \text{ and we double those } w_i \text{'s} \]

So \(W \) increases by \(<n\).

\[W \geq 0 \text{ always (all } w_i \geq 0), \text{ so } 0 \leq W \leq n - d + p \]

Rearrange: \(d \leq p \cdot l \).

Proves Thm:

Thm: Winnow 1 makes \(\leq 2K \log(2n) + 1 \)

\[= O(k \log n) \]

mist. when target is \(k \)-sparse mon. disj.

Next time:
- discuss
- Winnow 2 (LTFs)
- Perceptron alg for LTFs

\(\rightarrow \) dual perception, kernelization.