
Instructor: Rocco A. Servedio

Computer Science 4252: Introduction to Computational Learning Theory
Problem Set #4 Fall 2025

Due 11:59pm Tuesday, November 25, 2025

See the course Web page for instructions on how to submit homework.
Important: To make life easier for the TAs, please start each problem on a new page.

Remember to strive for both clarity and concision in your solutions;
solutions which are excessively long may be penalized.

Problem 1 In this problem you’ll explore how the AdaBoost algorithm (which, as we saw in
class, works over a fixed sample of data points) can be used to efficiently PAC learn certain linear
threshold functions.

(i) (easy) Suppose that h and f are both functions which take values in {−1, 1}. Show that for any
distribution D, h is a weak hypothesis for f with advantage γ if and only if Ex∼D[h(x)f(x)] ≥ 2γ.

(ii) Suppose that f(x1, . . . , xn) : {−1, 1}n → {−1, 1} is a linear threshold function f(x) = sign(w ·x)
where

[1] each xi takes values in {−1, 1};
[2] w = (w1, . . . , wn) where each wi is an integer value and W =

∑n
i=1 |wi|;

[3] for all x ∈ {−1, 1}n, we have w1x1 + · · ·+ wnxn 6= 0.

Show that for any distribution D over {−1, 1}n, there must be some xi such that |Ex∼D[f(x) ·xi]| ≥
1
W . (Hint: Use (and justify) the fact that 1 ≤ Ex∼D[|w · x|].)

(iii) Fix a polynomial p(n) and let C be the concept class of all linear threshold functions f(x) =
sign(w · x) over {−1, 1}n as in (ii) where

∑n
i=1 |wi| ≤ p(n). Show how AdaBoost can be used as a

PAC learning algorithm for C. Analyze the running time and sample complexity of your algorithm.
(Hint: Use AdaBoost as a consistent hypothesis finder.)

Problem 2 Suppose that concept class C is efficiently learnable in the SQ model by an algorithm
that uses only queries with tolerance τ , where 1

τ ≤ r = r(1/ε, n, size(c)). Show that then C is
efficiently learnable in the malicious noise model if the malicious noise rate η is at most 1

2r .

Problem 3 Our definition of efficient PAC learning in the presence of random classification noise
at rate η < 1/2 requires that the algorithm run in time poly( 1

1−2η ) (ignore all the other parameters
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for simplicity for this problem). This is intuitively plausible, since (i) if η = 0 (no noise) the function
1

1−2η equals 1, and (ii) as η approaches 1/2 (and learning becomes impossible) the function 1
1−2η

approaches infinity. But why is 1
1−2η the “right” function, as opposed to some other function such

as 1 + log( 1
1−2η ) or exp( 1

1−2η − 1), that satisfies (i) and (ii)?
Argue as clearly and convincingly as you can that any PAC learning algorithm for learning in

the presence of random classification noise at rate η must have runtime which grows as Ω( 1
1−2η ).

(Hint: One way to show this is to show that the sample complexity must grow as Ω( 1
1−2η ).)

Problem 4 Consider the uniform distribution U over [N ] = {1, . . . , N}. A single draw is guaran-
teed to return an element i that has U(i) = 1/N , which is “typical” for draws from this distribution
(since every element has weight 1/N).

Now consider the distribution Di over [N ] which puts all of its weight on the point i. A single
draw is guaranteed to return the element i that has D(i) = 1. Once again this is “typical” for
draws from this distribution, since every draw from Di will return an element (the same element)
whose weight is 1.

In this problem you’ll show that the above examples are special cases of a general phenomenon:
for any distribution, a small number of samples will “cover” most of the “typical” probability
weights that the distribution assigns to elements.

Let D be a probability distribution on the set [N ] = {1, . . . , N}. Given a value ε > 0 and a
point i ∈ [N ], we say that a set R = {r1, . . . , rt} ⊆ [N ] ε-covers i if there is some rj ∈ R such that

D(i) ∈
[

1

1 + ε
· D(rj), (1 + ε) · D(rj)

]
.

(Here “D(i)” denotes the amount of probability weight that distribution D puts on point i.)
Let R be a sample of m points drawn from D. Let U (for “uncovered”) be the set of all points

i ∈ [N ] such that R does not ε-cover i. Show that for a suitable choice of m = poly(logN, 1/ε),
with probability at least 99/100 it is the case that D(U) ≤ ε.
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