Instructor: Rocco A. Servedio

Computer Science 4252: Introduction to Computational Learning Theory
Problem Set #4 Fall 2025

Due 11:59pm Tuesday, November 25, 2025

See the course Web page for instructions on how to submit homework.
Important: To make life easier for the TAs, please start each problem on a new page.

Remember to strive for both clarity and concision in your solutions;
solutions which are excessively long may be penalized.

Problem 1 In this problem you’'ll explore how the AdaBoost algorithm (which, as we saw in
class, works over a fixed sample of data points) can be used to efficiently PAC learn certain linear
threshold functions.

(i) (easy) Suppose that h and f are both functions which take values in {—1,1}. Show that for any
distribution D, h is a weak hypothesis for f with advantage ~ if and only if E; p[h(x)f(z)] > 2.

(ii) Suppose that f(z1,...,2,) : {—1,1}" — {—1,1} is a linear threshold function f(z) = sign(w-x)
where

[1] each z; takes values in {—1,1};

[2] w = (wi,...,wy,) where each w; is an integer value and W = " | |w;l;

[3] for all z € {—1,1}", we have wiz1 + -+ + wpzy, # 0.
Show that for any distribution D over {—1,1}", there must be some z; such that | E,p[f(x)-z;]| >
- (Hint: Use (and justify) the fact that 1 < Eyp[jw - z|].)

(iii) Fix a polynomial p(n) and let C be the concept class of all linear threshold functions f(z) =
sign(w - ) over {—1,1}" as in (ii) where >_"" | |w;| < p(n). Show how AdaBoost can be used as a
PAC learning algorithm for C. Analyze the running time and sample complexity of your algorithm.
(Hint: Use AdaBoost as a consistent hypothesis finder.)

Problem 2 Suppose that concept class C is efficiently learnable in the SQ model by an algorithm
that uses only queries with tolerance 7, where % < r = r(1/e,n,size(c)). Show that then C is
efficiently learnable in the malicious noise model if the malicious noise rate 7 is at most %

Problem 3 Our definition of efficient PAC learning in the presence of random classification noise
at rate n < 1/2 requires that the algorithm run in time poly(ﬁ) (ignore all the other parameters
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for simplicity for this problem). This is intuitively plausible, since (i) if 7 = 0 (no noise) the function

ﬁ equals 1, and (ii) as n approaches 1/2 (and learning becomes impossible) the function ﬁ

approaches infinity. But why is ﬁ the “right” function, as opposed to some other function such
as 1+ log(ﬁ) or exp(ﬁ — 1), that satisfies (i) and (ii)?

Argue as clearly and convincingly as you can that any PAC learning algorithm for learning in
the presence of random classification noise at rate n must have runtime which grows as Q(ﬁ)
(Hint: One way to show this is to show that the sample complexity must grow as Q(ﬁ))

Problem 4 Consider the uniform distribution ¢ over [N] = {1,..., N}. A single draw is guaran-
teed to return an element i that has ¢4(i) = 1/N, which is “typical” for draws from this distribution
(since every element has weight 1/N).

Now consider the distribution D; over [N] which puts all of its weight on the point i. A single
draw is guaranteed to return the element ¢ that has D(i) = 1. Once again this is “typical” for
draws from this distribution, since every draw from D; will return an element (the same element)
whose weight is 1.

In this problem you’ll show that the above examples are special cases of a general phenomenon:
for any distribution, a small number of samples will “cover” most of the “typical” probability
weights that the distribution assigns to elements.

Let D be a probability distribution on the set [N] = {1,...,N}. Given a value ¢ > 0 and a
point ¢ € [N], we say that a set R = {r1,...,r} C [N] e-covers i if there is some r; € R such that

D(i) -D(rj), (1 +¢) - D(rj)
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(Here “D(i)” denotes the amount of probability weight that distribution D puts on point i.)
Let R be a sample of m points drawn from D. Let U (for “uncovered”) be the set of all points

i € [N] such that R does not e-cover i. Show that for a suitable choice of m = poly(log N, 1/e),
with probability at least 99/100 it is the case that D(U) < e.



