Instructor: Rocco A. Servedio

Computer Science 4252: Introduction to Computational Learning Theory Problem Set #4 Fall 2025

Due 11:59pm Tuesday, November 11, 2025

See the course Web page for instructions on how to submit homework.

Important: To make life easier for the TAs, please start each problem on a new page.

Remember to strive for both clarity and concision in your solutions; solutions which are excessively long may be penalized.

Problem 1

(i) A parity function $c_S: \{0,1\}^n \to \{0,1\}$ tests whether the parity of some subset S of the n Boolean variables x_1, \ldots, x_n is odd or even. In other words, if the number of variables in S that have value 1 is odd then $c_S(x) = 1$, and if the number is even then $c_S(x) = 0$. For example, the function $c_S = x_1 \oplus x_3 \oplus x_4$ computes the parity of the subset $S = \{x_1, x_3, x_4\}$, and $c_S(0010) = 1$, $c_S(1010) = 0$.

The class of parity functions \mathcal{P} consists of all functions that can be described in this way. Formally,

$$\mathcal{P} = \{c_S \mid c_S = \bigoplus_{x_i \in S} x_i, \text{ where } S \subseteq \{x_1, \dots, x_n\}\}.$$

Determine the exact value of the VC dimension of the class \mathcal{P} of parity functions. You must define a function f(n); give a set of f(n) examples and show that it is shattered by C; and show that no set of size f(n) + 1 is shattered by C.

(ii) Now consider the instance space X consisting of all words of at most 7 letters that have a dictionary entry at www.dictionary.com. Let \mathcal{C} be a concept class consisting of 26 concepts, c_a through c_z . A word w in X is an element of c_ℓ if the letter ℓ is present in w. So, for example, the word "book" is an element of c_b , c_o and c_k .

What is the VC dimension of C? Justify your answer.

Problem 2

- (i) Let \mathcal{C} be a concept class over $\{0,1\}^n$ for which $|\mathcal{C}|=2^{n^2}$. True or false: the VC dimension of \mathcal{C} is greater than n. Justify your answer.
- (ii) Let X be a finite domain with |X| = 2k + 1 (in other words X contains an odd number of elements). True or false: There is a concept class \mathcal{C} over X for which $|\mathcal{C}| = \frac{1}{2}2^{|X|}$ (so half of all possible concepts over X belong to \mathcal{C}) and $VCDIM(\mathcal{C}) \leq k$. Justify your answer.

Problem 3 A decision tree over $\{0,1\}^n$ is a full binary tree (each internal node has two children) in which each internal node is labeled with a variable and each leaf node is labeled with an output bit. The output of a decision tree T on an input $a \in \{0,1\}^n$ is the output bit which is reached by the path through T which is determined by a; this path starts at the root of T and goes right when a satisfies the variable at a node and goes left when a does not.

Let C_k be the class of all decision trees over $\{0,1\}^n$ with k internal nodes (hence with k+1 leaves). Show that for *any* subset S of $\{0,1\}^n$ that contains k strings in $\{0,1\}^n$, the set S is shattered by C_k . What can you infer about the VC dimension of C_k from this?

Problem 4 Recall that a halfspace over the domain $X = \{0,1\}^n$, also known as a linear threshold function, is a function of the form $h: \{0,1\}^n \to \{-1,1\}$, $h(x) = \text{sign}(w_1x_1 + \cdots + w_nx_n - \theta)$, where sign(t) = 1 if $t \geq 0$ and sign(t) = -1 if t < 0.) Let \mathcal{C} be the concept class of all "XORs of two halfspaces" over $X = \{0,1\}^n$; i.e. a concept $c: \{0,1\}^n \to \{-1,1\}$ is in \mathcal{C} if there are two halfspaces $h_1, h_2: \{0,1\}^n \to \{-1,1\}$ such that

$$c(x) = 1$$
 if and only if EITHER $(h_1(x) = 1 \text{ and } h_2(x) = -1)$ OR $(h_1(x) = -1 \text{ and } h_2(x) = 1)$

(but if
$$h_1(x) = h_2(x) = 1$$
 or $h_1(x) = h_2(x) = 0$, then $c(x) = 0$).

Show that the concept class C is PAC learnable in $poly(n, 1/\varepsilon, 1/\delta)$ time. (You may use any results stated in class about the learnability of halfspaces.)