The AdaBoost algorithm

Input to AdaBoost: m labelled examples $S = (x_1, y_1), \ldots, (x_m, y_m)$ where each label $y_i \in \pm 1$

Notation:

- D_t denotes the t-th distribution AdaBoost constructs over the m examples. $D_t(i)$ denotes $\Pr_{D_t}(x_i)$.
- h_t is the t-th hypothesis.
- ϵ_t denotes $\Pr_{i \in D_t}[h_t(x_i) \neq y_i]$ the error of h_t w.r.t. D_t

The algorithm:

1. Initialize $D_1(i) = \frac{1}{m}$ for each $i = 1, \ldots, m$.

2. For $t = 1$ to T do:

 (a) Run weak learner L on D_t to get hypothesis h_t which has error ϵ_t w.r.t. D_t.

 (b) Let $\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$

 (c) Update
 $$D_{t+1}(i) = \frac{D_t(i) \cdot \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$
 where Z_t is a normalization factor so that $\sum_{i=1}^{m} D_{t+1}(i) = 1$.

3. Final hypothesis is $H(x) = \text{sign}(f(x))$ where $f(x) = \sum_{t=1}^{T} \alpha_t h_t(x)$.