Admin: can pick up midterms/sols from Rocco's office.

Last time: • finished VC01M \(\rightarrow (\text{CHF} \rightarrow \text{PAC})\) thm
 • Applic: PAC learning LTFS over \(\mathbb{R}\), efficiently!

\[\#\text{LTFS over } 10^{15} \approx 2^{n^2} \Rightarrow n^2, \frac{1}{\varepsilon} \left(1, 1941 + 1941\right) \]
 gives \(n^2 SC\)

\[\text{VC01M} = n+1 \rightarrow n n SC \text{ suffices.} \]

BOOSTING:
 • boosting confidence (easy)
 • started boosting accuracy

Today:
 "proof of concept": 3-step boosting
 (base of Schapire orig. recursive booster)

KV 4 - 4.32
 • boosting by filtering vs
 boosting by sampling; introd. AdaBoost

Spirit of boosting: exploiting the WC
 "guarantee:" ANY \(\mathcal{D}\): WC gives \(\frac{1}{2} + \gamma\) acc h.p.

Devise \(\mathcal{D}_1, \mathcal{D}_2, \ldots\) s.t. WC must provide "new info"
 to achieve \(\frac{1}{2} + \gamma\) acc.

3-stage boosting. Assume \(\gamma = \frac{1}{10}\), \(\gamma\)
 every run of WC on any dist \(\mathcal{D}\) gives \(\frac{1}{4}\)
\(\text{hyp } h' \not\models \Pr_{x \sim \mathcal{D}'} [h'(x) \neq c(x)] = \frac{4}{10} \).

1. Run \(A \) on \(\mathcal{D}' = \mathcal{D} \) to get \(h_1 \).

\[
\Pr_{x \sim \mathcal{D}'} [h_1(x) \neq c(x)] = \frac{4}{10}.
\]

2. What should \(\mathcal{D}_2 \) be, to "force \(A \) to give a hyp \(h_2 \) that has new useful info"?

The right \(\mathcal{D}_2 \) is "scales up" wt of each \(x \) s.t. \(h_1(x) \neq c(x) \) by \(\frac{5}{4} \).

- "scales down" wt \(h_1(x) = c(x) \) by \(\frac{5}{6} \).

This is \(\mathcal{D}_2 \).

\[
\Pr_{x \sim \mathcal{D}_2} [h_2(x) \neq c(x)] = \frac{1}{2}.
\]

So \(h_2 \), which sat.

\[
\Pr_{x \sim \mathcal{D}_2} [h_2(x) \neq c(x)] = \frac{4}{10},
\]

"must have new info about \(c \)."
Q: How to sim. $\text{EX}(c, \mathcal{D}_2)$ given $\text{EX}(c, \mathcal{D}_1)$?

To draw from $\text{EX}(c, \mathcal{D}_2)$:

fair \mathcal{H}: draw from \text{until get one where $h_i(x) = c(x)$; use that $x, c(x)$}

T: $h_i(x) \neq c(x)$

Highly efficient (by prob. 4/10).

what if $\Pr[h_i(x) = c(x)] = 99.99\%$?

0.01\% of time?

Then h_i already highly acc, + c

3. Have h_1, h_2. What's a good \mathcal{D}_3?

\mathcal{D}_3 is \mathcal{D} restr. to \text{"dis"}:

\begin{align*}
\text{x s.t. } & h_1(x) \neq h_2(x) \\
\text{Run } A \text{ on } & \text{EX}(c, \mathcal{D}_3).
\end{align*}

To sim. $\text{EX}(c, \mathcal{D}_3)$:

check if $h_i(x) \neq h_2(x)$; if so, use it; if not disc and repeat.

Could be that $\Pr[h_i(x) \neq h_2(x)]$ very small, $\Pr[x \sim \mathcal{D}]$.

Then very ineff (??). But h_3 "matters" only on n fracs of \mathcal{D}.

So in very small, pick h_3 arbitrarily, + OK.
Final h is $\text{MAJ}(h_1, h_2, h_3)$.

Claim: $\Pr[h(x) \neq c(x)] = 35.2\%$.

PF: Divide X into 4 regions based on h_1, h_2's agree/disagree w/ c:

<table>
<thead>
<tr>
<th>Region</th>
<th>Condition 1</th>
<th>Condition 2</th>
<th>$\Pr[h_1(x) \neq c(x)]$</th>
<th>$\Pr[h_2(x) \neq c(x)]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_1</td>
<td>$h_1(x) = c(x)$, $h_2(x) = c(x)$</td>
<td>$h_1(x) = c(x)$, $h_2(x) \neq c(x)$</td>
<td>$\frac{6}{5} \cdot 0.5 \cdot \rho$</td>
<td>$\frac{6}{5} \cdot \rho$</td>
</tr>
<tr>
<td>R_2</td>
<td>$h_1(x) = c(x)$, $h_2(x) \neq c(x)$</td>
<td>$h_1(x) \neq c(x)$, $h_2(x) = c(x)$</td>
<td>$\frac{6}{5} \cdot \rho$</td>
<td>$\frac{6}{5} \cdot (0.4 - \rho)$</td>
</tr>
<tr>
<td>R_3</td>
<td>$h_1(x) \neq c(x)$, $h_2(x) \neq c(x)$</td>
<td>$h_1(x) \neq c(x)$, $h_2(x) \neq c(x)$</td>
<td>$\frac{4}{5} \cdot (0.4 - \rho)$</td>
<td>$\frac{4}{5} \cdot (0.4 - \rho)$</td>
</tr>
<tr>
<td>R_4</td>
<td>$h_1(x) \neq c(x)$, $h_2(x) = c(x)$</td>
<td>$h_1(x) = c(x)$, $h_2(x) = c(x)$</td>
<td>$\frac{4}{5} \cdot (0.4 - \rho)$</td>
<td>$\frac{4}{5} \cdot (0.1 + \rho)$</td>
</tr>
</tbody>
</table>

$D_2: 0.5 \cdot \rho$, $D_3: \frac{6}{5} \cdot \rho$.

Hypothesis: h_2 wrong on R_2, R_3. Let ρ denote $\Pr[h(x) \neq c(x)] = 0.4$, so R_3.

Recall D_2 obtained by $\downarrow R_1, R_2$ by $\frac{5}{6}$, $\frac{5}{4}$ on R_3, R_4.

So invert this to recover D_3's mass on each R_i. Get $R_1 - R_4$.

Final h's error? h wrong on all of R_3; right on all of R_1. D_3 puts all of it on R_2, R_4; h_3 wrong on 40% of D_3.

So final h's error on 40% of $R_2 \cup R_4$.

h's error under $D = D_1$:

$$\Pr[h(x) \neq c(x)] = \Pr[R_3] + \frac{4}{10} \Pr[R_2 \cup R_4]$$

$$= \frac{4}{5} \cdot (0.4 - \rho) + \frac{4}{10} \left(\frac{6}{5} \cdot \rho + \frac{4}{5} \cdot (0.1 + \rho) \right)$$
If \(WL \) has error \(\delta < \frac{1}{2} \), weak hyp \(h \) has error \(\leq 3\delta^2 - 2\delta^3 \) under \(D = D_i \).

Check: \(3\delta^2 - 2\delta^3 < \delta \) for \(\delta < \frac{1}{2} \).

Next time: AdaBoost: single weighted Maj over \(h_1, h_2, \ldots \)