Admin: • Pick up HW 1 solutions (by door)
- Reading: 1.1.-1.3 of KV; continue, read all of Chap. 1, 2.
- OH changes: Rocco OH: WED 9-11.

Do have in-person class Thurs 10/4
Don't) 1 1 Tues 10/9 (video).

Last time: started PAC model. \(\epsilon, \delta, m = \text{sample complexity} \)

Today: Online-to-PAC conversion
- Revisit def. of PAC learning, Markov's ineq.
- Basic tools from prob.: concentration ineq., etc.

OLMB \rightarrow PAC conversion.

Let \(E \) be c.c., suppose we have an OLMB alg. \(A \) for \(E \) w/ m.b. 'M'. Can we get alg for \(E \) in PAC?

\[\text{YES} \]

Then: Let \(A \) be OLMB alg for \(E \) w/ m.b. 'M'.

Then there is a PAC alg. for \(E \) w/ \(m \) sample complexity

\[m = M + \frac{M+1}{\epsilon} \cdot \ln \left(\frac{M+1}{\delta} \right). \]

PF: We'll assume (WLOG!) that our OLMB alg \(A \) only changes hyp. when makes mistake.
The PAC alg: Run \(A \) on seq. of lab. ex. indep. obtained from \(E X(c, \rho) \). If current hyp (h) ever
correctly classifies \(\frac{L \ln \left(\frac{M+1}{\delta} \right)}{\epsilon} \) ex. from EX(0, 0)

in a row, stop and output \(h_i \).

ex used is \(\leq \frac{1}{\epsilon} \ln \left(\frac{M+1}{\delta} \right) \) \(\leq M \) mistakes.

\[
\sqrt{\ldots} \cdot \sqrt{\ldots} \cdot \sqrt{\ldots} \cdot \sqrt{\ldots} \cdot \sqrt{\ldots} \cdot \sqrt{\ldots} \\
\text{length} \leq \frac{1}{\epsilon} \ln \left(\frac{M+1}{\delta} \right) \leq M \text{ mistakes.}
\]

Why is \(A \)'s output hyp. \(\epsilon \)-acc. w.p. \(\geq 1 - \delta \)?

Consider \(i \)-th hyp. \(A \) uses \(h_i \).

If \(\text{err}_x \left(h_i, c \right) \leq \epsilon \): \(C \)

If \(\text{err}_x \left(h_i, c \right) > \epsilon \): \(\Pr \left[h \text{ gets } \frac{1}{\epsilon} \ln \left(\frac{M+1}{\delta} \right) \text{ ex. right in a row} \right] \)

\[< (1 - \epsilon)^k = (1 - \epsilon)^{1 - \ln \left(\frac{M+1}{\delta} \right)} = \frac{1}{\epsilon} \ln \left(\frac{M+1}{\delta} \right) \leq \frac{\delta}{M+1} = \frac{\delta}{M+1}.
\]

Since \(A \) only uses \(\leq M+1 \) hyp's \(h_1, \ldots, h_{M+1} \),

\(\forall B \Rightarrow \Pr \left[\text{any hyp } A \text{ uses has error } > \epsilon \\
\text{ and is output} \right] \leq \left(M+1 \right) \cdot \frac{\delta}{M+1} = \delta. \)
So, $Pr[C A] = \frac{\text{hyp. with error } \leq \epsilon}{1 - \delta}$.

So, have PAC alg for \text{disj}, \text{sparse disj}, \text{conj}, \text{DC}, various LTF types, etc.

\[\text{Ex: } \text{Disj: Elim. alg: MB } n, \text{ so have PAC alg. s.c. } O\left(\frac{n}{\epsilon} \cdot \log \left(\frac{n}{\delta}\right)\right) \]

\[\Rightarrow \text{OLMB } \Rightarrow \text{PAC.} \]

\[\Rightarrow \text{Q: } \text{Does PAC } \Rightarrow \text{OLMB?} \]

\[\Rightarrow \text{No: see have PAC alg. for } C = \{\text{all intervals of [0,1]}\}, \text{ but know no OLMB alg. w/ finite MB for } C. \]

What about finite domains?

Q: Let $C = \text{c.c. over } \{0,1\}$. For $C = \text{poly}(n)$ time PAC alg for $C \Rightarrow \text{poly}(n)$ time OLMB alg for C?

Under suitable assumption from crypto: NO

Idea: View $\{0,1\}^{n}$ as $\{1,2,\ldots,2^n\}$.

Via crypto, can come up with "one-way flashlight" function c on $\{1,2,\ldots,2^n\}$.

\[\text{Final words:} \]
If given \(c(i) \): easy to compute \(c(i) \) for \(i \leq j \) but computationally hard to compute \(c(k) \) for \(k > j \).

OLMB model: adv. gives 1, 2, ..., always hard to compute \(c(i) \) on next pt.

PAC model: Draw 1000 examples:

\[\rightarrow \text{have high prob. that some ex in these draws is in top 1\% (0.1\%) of } \mathbf{Y}, \text{ no matter what } \mathbf{Y} \text{ is.} \]

Back to PAC def: two issues.

\#1: \textit{"size" of concept } \(c \).

- Some cc's: \(c \) natural to assign a \textit{size}, \(\text{size}(c) \), to each \(c \in C \).
 - \(\text{size}(c) \) measures "how } c \text{ is } c".

Basically, \# bits needed to describe \(c \).

Ex: \(C = \text{ all ONF formulas over } \{0,1\}^n \).

Any \(f: \{0,1\}^n \rightarrow \{0,1\} \) can be written as a ONF.

Some \(f \)'s: can \(\Rightarrow \) ONF with
few terms. \(f(x) = x, x_2, x_3, \overline{x_1} x_4 x_5 x_6 \)

2-term ONF.

Other hideous \(f \) needs \(10^{100} \) terms.

We view size \((\cdot) \) as size of smallest representation of the function in \(C \).

\(C = \text{ONFs} \)

\(f(x) = x, x_2, \overline{x_3} x_4 \) size = 2

2-term ONF.

\[
\begin{align*}
&x_1 x_2 x_7 \lor x_1 x_2 \overline{x_7} \lor x_3 x_4 x_8 x_9 \lor x_3 x_4 \overline{x_8} \overline{x_9} \\
& \lor x_3 x_4 x_8 \overline{x_9} \lor x_3 x_4 \overline{x_8} x_9
\end{align*}
\]

6-term ONF

Ex: \(C = \text{all decision trees over } 0, 1^n \)

DT size of a function = size (\#leaves) of smallest DT computing the fn.
Refined notion of efficient PAC learning: if \(C \) has size assoc. \(\leq \) it, \((X=\mathbb{R}^n, 50/15) \) + target fn has size \(c = 5 \),
efficient PAC alg: should run in time
\[\text{poly}(\frac{n}{\varepsilon}, \frac{1}{\delta}, 5). \] (isn't necessary)
Alg gets all these as inputs.

For some \(C \)'s, not really interesting to consider size.

\(C = \text{conj: 05; size } \leq n \)

Issue #2: PAC learning \(C \not\subset \text{hyp. class } \mathcal{H} \).

\(\mathcal{H} \): a class of programs. If PAC alg \(A \) outputs a \(h \in \mathcal{H} \) where program \(h \) is very inefficient: useless.

Say a hyp. class \(\mathcal{H} \) is polynomially evaluable \((X=\mathbb{R}^n \text{ or } \{0,1\}^n) \) if every \(h \in \mathcal{H} \) is a program which, on any input \(x \in X \), runs in \(\text{poly}(n) \) time.

Right notion of eff. PAC learning:
must use polynomial eval. hyp. class \(\mathcal{H} \).

(If you don't require this, easy but useless PAC alg. for \(\approx \) any \(E \): "offloads all comput. onto \(h \).")

Set stage: (Read: Appendix of KV book)

(Chernoff, Hoeffding, Markov)

Motiv: Sps PAC universe.

Have \(h : X \to \{0,1\} \), \(\text{Have } \mathbb{E}(c, \Theta) \).

? how good is \(h \)?

Get \((x', c(x')) \cdots (x^{100}, c(x^{100})) \)

Eval. \(h(x') \)

\[
\tilde{P} = \frac{\# \mathcal{H}}{m}
\]

Next time:

\[
\hat{p} = \frac{\# \mathcal{H}}{m}
\]
let us discuss acc., conf. of estim. p.