Last time: * WM alg.
* RWM \xrightarrow{\text{"do almost as well as best expert"}}

\[\text{Done } \neg \text{OLMB!} \]

Today: Probably Approximately Correct (PAC) Learning Model. \textcircled{Valiant '84}

KV Book 1.1-1.3, all Chap. 1, approx. prob. inex.

\[\text{Drawbacks of OLMB:} \]

- Very worst-case: any ex seq. \(\text{ex. seq.} \)
- OLMB measures perf. from day 1. Hard
- \(\emptyset \) guarantee: can be unsat.

Motiv. for PAC model: realistic & helpful to assume statistical regularity in examples.

Hi-level idea of PAC setting:

* Assume the ex \(x \in X \) that learner gets are \textcircled{indep} drawn from some fixed (unknown)-underlying prob. dist. \(D \) \rightarrow model of the world

* "batch" model: get data set of indep. labeled \((x,c(x))\) pairs. Alg. ponders, outputs an \(h : X \rightarrow \{0,1\} \)\(\xrightarrow{\text{not online}} \)
Goal: construct a hyp h that accurately pred. value of c on ex. drawn from \mathcal{D}.

PAC framework for learning $c: \mathcal{C}$ using a hypothesis class \mathcal{H}:
- as before, there's a fixed unknown $c \in \mathcal{C}$
- Also a fixed unknown dist. \mathcal{D} over X.
(Learner "knows \mathcal{C}").
- Learner is given a training set of m labeled ex $(x, c(x))$ where each x indep. drawn from \mathcal{D}.
 Equivalently: learning access an example oracle $EX(c, \mathcal{D})$

 $EX(c, \mathcal{D}) \rightarrow (x, c(x)) \sim \mathcal{D}$.

- Learner computes, \star outputs a $h: X \rightarrow \{0,1\}$ where $h \in \mathcal{H}$.

Def: let $h, c : X \rightarrow \{0,1\}$; let \mathcal{D} be dist. over X. The error of h on c w.r.t. \mathcal{D} is

$$err_{\mathcal{D}}(h,c) := \Pr_{x \sim \mathcal{D}}[h(x) \neq c(x)].$$
What can we hope for?

- 0 error? No; \(\mathcal{D} \) may put tiny wt on some portion of \(X \). High acc (low error)...
- Definitely get low-error \(h \)? No; every one of \(m \) ex. from \(\mathcal{D} \) is.

CAN hope to, with high prob. achieve low-error hyp.

Def (Prelim. def.) "Alg. \(A \) PAC learns \(c \subset \mathcal{C} \) using hyp. class \(\mathcal{H} \) with \(m \) examples" means:

\[
\forall c \in \mathcal{C} \text{ (target)},
\forall \text{ dist } \mathcal{D} \text{ over domain } X,
\forall \text{ params } 0 < \delta, \epsilon < 1
\]

If \(A \) is given \(\epsilon, \delta \) + access to \(EX(c, \mathcal{D}) \)
\(A \) draws \(\leq m \) ex. from \(EX(c, \mathcal{D}) \) w.p. \(> 1 - \delta \)
(over \(m \) draws & any internal rand. of \(A \)), \(A \) outputs a \(h : \mathcal{H} \) s.t. \(\text{err}_g(h, c) \leq \epsilon \). "distribution-indep. learning".
Notes: \(\varepsilon = \text{"accuracy param."}\)

\(J = \text{"confidence param."}\)

\(m = \text{"sample complexity"}\)

Runtime? Call to \(\text{EX}\) one time step.

Efficient alg: \(\text{poly}\left(\frac{1}{\varepsilon}, \frac{1}{\delta}\right)\) \((\log \frac{1}{\delta})\)

Often \(X=\mathbb{R}^n, \{0,1\}^n:\) \(\text{poly}\left(\gamma, \frac{1}{\varepsilon}, \frac{1}{\delta}\right)\)

Note runtime always \(\geq (\#\text{samp. used})\)

\(m\).

\(\Rightarrow\) If \(\mathcal{H}=\mathcal{C}\), "proper" learning alg (by-the-book)

Example: PAC learning intervals.

\(X=[0,1], \mathcal{C} = \{[a,b]: a \leq b \in [0,1]\}\) = intervals.

\(c = [.42, .67]: c(.5) = 1, c(.8) = 0\)

There's some \(D\) over \([0,1]\); \(\mathcal{C}\) doesn't know it.

Target interval, say, is \(c = [a, b].\)

(Note \(h \leq c\)).
Alg. A is:

- draw \(\mathcal{D} \) ex from EX(c,D)
- Let \(a' = \text{leftmost} + (\text{value in } [0,0]) \)
 \(b' = \text{rightmost} + (\text{''''''}) \)

A outputs \(h = [a', b'] \).

\[
err_{\mathcal{D}}(h, c) = \Pr[x \in [a, a'] \cup (b', b)] \sim \mathcal{D}
\]

\[
a_1 = \text{pt s.t. } \Pr[x \in [a_1, a_1]] = \frac{\varepsilon}{2} \sim \mathcal{D}
\]
\[
b_1 = \text{pt s.t. } \Pr[x \in (b_1, b_1]] = \frac{\varepsilon}{2} \sim \mathcal{D}
\]

As long as \(A \)’s \(\text{ex.} \) include both an \(\text{ex.} \) in \(L \) and an \(\text{ex.} \) in \(R \),

\[
err_{\mathcal{D}}(h, c) \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon
\]

Consider a single rand. \(\text{ex.} \) \(x \sim \mathcal{D} \).

\[
Pr[x \text{ misses } L] = 1 - \frac{\varepsilon}{2}.
\]

So

\[
Pr[\text{in indep. draws from } \mathcal{D} \text{ all miss } L] = \left(1 - \frac{\varepsilon}{2}\right)^n
\]

\[
\leq e^{-\frac{\varepsilon}{2}}.
\]

Likewise for \(R \).

So (u.b.)

\[
Pr[\text{in indep. ex. from } \mathcal{D} \text{ either all miss } L \text{ or all miss } R]
\]
\(\leq \left(2e^{-\frac{\epsilon m}{2}} \right) \) \[\text{Want} \] \(\leq \delta. \)

Taking \(m = \frac{2}{\epsilon} \cdot \ln\left(\frac{2}{\delta} \right) \) suffices.

For this \(m \), w.p. \(\geq 1 - \delta \), an ex. hits \(\subseteq \), an ex. hits \(\subseteq \).

So w.p. \(\geq 1 - \delta \), \(\text{err}_E(h, c) \leq \epsilon. \)

So we showed \(A \) is a PAC alg. for \(C \).

(\text{efficient one}: \(m = \frac{2}{\epsilon} \cdot \ln\left(\frac{2}{\delta} \right) \))

\[\text{A A R:} \quad \] controlled against getting bad sample of \(x \)'s.

\(\cdot \epsilon = \text{acc. param. It's ok to fail on } \epsilon \text{ frac of } \mathcal{D} \) ("rare ex" missed during training phase).

\(\cdot \)