Last time: quick intro to CLT: admin overview of learning models:
Key players: \(X, c, E; \) \(K \)-ONF, \(s \)-term ONF

\(\text{lit, conj, LTFs.} \rightarrow \mathcal{F}(\mathbb{R}^n \rightarrow \{0,1\}) \) is a LTF if
\(\exists w \in \mathbb{R}^n, \theta \in \mathbb{R} \) s.t. \(\{0,1\} \)
\(\forall x, f(x) = 1 \) if \(w \cdot x \geq \theta \), \(= 0 \) if \(w \cdot x < \theta \).

Today: Define OCMB model! "
 Few specific alg's: simple "init. int."; conj. (elim.); alg. for 1-decision lists.

Readings: Blum survey (sec. 3).

- Next week: watch lectures online.
- My OH: Fri 9-11. HW1: avail. today!

Online Mistake-Bound Learning Model

The life experience of a learner is a sequence of trials. Throughout process, learner always maintains hypothesis \(h: X \rightarrow \{0,1\} \).

A trial:
- Learner is given an \(x \in X \).
- "outputs \(h(x) \) (in \(\{0,1\} \))".
- "is told true value of \(c(x) \)."
If \(h(x) \neq c(x) \), learner is charged a mistake.

\(\star \) Learner can update \(h \) before next trial.

- No noise; learner always gets true \(c(x) \).
- No missing data.

We assess performance of a \(h \) by counting # mistakes on its seq. of examples.

Def: A learning alg. \(A \) in OCMB model has mistake bound \(M \) for \(c \in C \) if:

- For any target concept \(c \in C \) and any seq. of examples from \(X \), \(A \) makes \(\leq M \) mistakes.

Note:

- Sparsity \(|X| \) finite. There's an alg. \(A \) w/ MB \(M \leq |X| \) (memorization.)
- If \(|C| \) finite, \(\exists \) alg. \(A \) w/ MB \(\leq |C|-1 \) (try all concepts in \(C \)).

Example: \(X = \{0, 1, 2, \ldots, 2^n-1\} \)

- \(C \) = class of all initial intervals; \(1 \in \leq 2^n \)
- e.g. \(c \in \{0, 1, 2, \ldots, 16, 17\} \).
- \(|X| = 2^n \)

Bin. search gives alg. \(A \) w/ MB \(\bigcirc \).

- Init. hyp. \(\{0, 1, \ldots, 2^n-1\} \)
- Update rule:
 - If \(h(x) = c(x) \), no change.
 - If \(h(x) \neq c(x) \), adjust.
h.s.t. new r+ endpt is in middle of current "uncertainty region."
Each mist. cuts & by at least 1/2, so after n mist. its length ≤ 1, so \(h \in \mathbb{C} \).

Tweak of above: \(X = [0, I] \subseteq \mathbb{R} \),
\(C = \text{init. intervals} \); e.g. \(C = [0, a] \subseteq \mathbb{R} \).
No finite MB for \(C \). (Any finite set of ex. can't specify \(C \) fully).

Next \(\approx 2 \) lect: some specific OC MB algs for specific \(C \) 's.

- Elim. alg. For disj. (disj. \(= 0 \cap \) \(X_3 \lor X_2 \lor X_6 \))
 - 1-OC
 - Sparse disj. (Winnow), Certain LTFs (Winnow)
 - Perceptron for LTFs (Kernel)

- Elim. Alg. For monotone disj.

\(C = \text{all} \); e.g. \(C(x) = X_2 \lor X_4 \lor X_6 \lor X_8 \)
\(X = \{0, 1\}^n \) \(\Rightarrow \) \(|I| = |X| = 2^n \)
The alg: Init. hyp \(h(x) \equiv x \lor X_2 \lor \ldots \lor X_n \).
Update rule: If \(h(x) = c(x) \), no update.
If \(h(x) = 1 \) but \(c(x) = 0 \) (false pos) : erase from \(h \) each \(x \); that was 1 in \(X \).
If \(h(x) = 0 \) but \(c(x) = 1 \) (false neg.) : output \text{FAIL}.

Ex: Say \(n = 5 \). \(h_{\text{init}} \equiv x, vx_2 \ldots vx_5 \). Get \(ex = 01001 \). \(h_{\text{init}}(x) = 1 \). Told \(c(x) = 0 \).

Update \(h \) to \(x, vx_3, vx_4 \).

Claim: Any var \(x_i \) that's in \(c \) is never removed from \(h \). (If \(x_i = 2 \) in an \(ex \), \(c(x_i) = 2 \) \(x \) won't cause alg. to erase it.)

Claim: Alg never makes f.m. mistake given that \(c \) is a mon. disj. (\(h \) always includes all var \(s \) in \(c \), so if \(c(x) = 2 \), then \(h(x) = 2 \).)

Theorem: Elim. alg. has \(MB \leq n \).

PF: See \(h \) always incl. all vars in \(c \).
Each mist: f.p. \(h(x) = 1 \), so some \(x \) not in \(c \) was \(1 \) in \(x \) \& that \(x \) is in \(h \); so each mist. removes \(\geq 1 \) \(x \) from \(h \). \(h \) init. has \(n \) vars, \(\geq \) so \(\leq n \) mistakes.

Notes: · MB \(n \) for Cover \(0,1 \): \(n \)
 poly \((n)\)
· Runtime per trial, per update \(0(n) \).
· We assumed no noise; noise DESTROYS this.
· Extends to \(c = \) all \(\bar{c} \)
 (poss. non-mon.) easily.
\(2^n \) entries.
\[h_{\text{init}} = x_1 \lor \overline{x_1} \lor x_2 \lor x_2 \ldots \lor x_n \lor x_n \]

as before.

1st \text{mist}: eliminates \(n \) of

\[x = 10010 : \ c(x) = 0, \ h_{\text{init}} = 1 \]

as before.

* Can use same idea to learn conj.

Or, can negate each label!

if \(c(x) = x_2 \lor \overline{x_3} \lor \overline{x_4} \),

\[c(x) = \overline{x_2} \land x_3 \land x_4 \]

\[\text{Decision Lists (2-OL)} \]

A 2-OL: a func \(c : \{0,1\}^n \rightarrow \{0,1\} \)

\[
\begin{align*}
\text{if } l_1 \text{ then output } b_1 \\
\text{else if } l_2 \text{ then output } b_2 \\
\text{else } \ldots \text{ } \\
\text{else if } l_r \text{ then output } b_r \\
\text{else output } b_{r+1}
\end{align*}
\]

(K-OL: if \(C_i \) then \(b_i \) else...

each \(C_i \) is a conj of \(k \) literals)
Example: \[X_7 \rightarrow X_4 \rightarrow X_2 \rightarrow X_5 \rightarrow 0 \]

is a 1-OC. Length 4

Next alg: OCMB alg for $C = \{ \text{all length-} r \text{ 1 OC's over } \{0,1\}^n \}$ with MB $O(n \cdot r)$.