Absolute basics of probability for COMS 4236 Spring 2023

All of the probability we use will be over finite sample spaces - we will never have to worry about subtle issues like measurability or what is/isn't a legal event. The basic notions discussed in this brief note are

- sample spaces;
- probability distributions;
- events, compound events, and independence;
- random variables, expectation, and linearity of expectation.

This note is highly informal and contains only the absolute basics of terminology about these topics.

1 Sample spaces

As mentioned above we will only ever consider finite sample spaces. A sample space S is the set of all possible outcomes of some "probabilistic experiment." The notion of a probabilistic experiment and its corresponding sample space may be best illustrated through some concrete examples:

1. Example 1: One probabilistic experiment would be "Pick a uniform random person from the entire Earth's population as of midnight EST on Jan 1 2023." For this probabilistic experiment, the sample space S would simply be the set of all living people on Earth at midnight EST on Jan 12023.
2. Example 2: A different probabilistic experiment (closer to our concerns in COMS 4236) would be "Choose a random n-bit string." In this case the sample space S would be the set $S=\{0,1\}^{n}$.
3. Example 3: Finally, a third probabilistic experiment would be "Choose a random number between 1 and n where each number is i chosen with probability proportional to i^{2}." In this case the sample space S would be the set $[n]=\{1, \ldots, n\}$.

2 Probability distributions

A probability distribution \mathcal{D} over a sample space S is defined by a probability weight $\mathcal{D}(s)$ associated with each outcome $s \in S$. These probability weights must be nonnegative (they can be zero) and they must sum to 1 ; thus we have

$$
\mathcal{D}(s) \geq 0 \text { for all } s \in S \quad \text { and } \quad \sum_{s \in S} \mathcal{D}(s)=1
$$

A probabilistic experiment naturally corresponds to a probability distribution over the relevant sample space. Returning to Example (1.) from above, for each person s in the world we would have $\mathcal{D}(s)=1 / N$ where N is the total number of people in the world. For Example (2.), we would have $\mathcal{D}(x)=\frac{1}{2^{n}}$ for each $x \in\{0,1\}^{n}$. For Example (3.), since $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$, we would have $\mathcal{D}(i)=\frac{i^{2}}{n(n+1)(2 n+1) / 6}$ for each $i \in[n]$. The intuition to have in mind is that we pick a random element of the sample space S according to \mathcal{D}.

This last example illustrates that (of course) not all probability distributions need to put equal weights on all possible outcomes; when a distribution puts equal weight on all points in the sample space S we say it is the uniform distribution over S. Examples (1.) and (2.) above correspond to uniform distributions, Example (3.) does not.

Instead of writing $\mathcal{D}(x)$ to denote the probability of outcome $x \in S$, we sometimes write $\operatorname{Pr}_{\mathcal{D}}[x]$ or just $\operatorname{Pr}[x]$ if the distribution \mathcal{D} is clear from the context.

3 Events, compound events and independence

An event is simply a subset $A \subseteq S$ of the sample space. The probability of an event A under distribution \mathcal{D} over S is simply $\operatorname{Pr}_{\mathcal{D}}[A]=\sum_{s \in A} \operatorname{Pr}_{\mathcal{D}}[s]$. (Think of an event as "something that either does or doesn't happen" when the probabilistic experiment takes place, i.e. when a random s is drawn according to \mathcal{D}.)

For Example (1.) above, one event would be the subset of human beings who are complexity theorists; the probability of this event would be the probability that a randomly selected person is a complexity theorist. For Example (2.), one event would be the set of all n-bit strings with exactly $n / 2$ many ones (say that n is even); since there are $\binom{n}{n / 2}$ elements in this set and the distribution is uniform, the probability of this event (i.e. the probability that a uniform random n-bit string has exactly half of its coordinates 1 and exactly half 0) would be $\binom{n}{n / 2} / 2^{n}$, which is $\Theta(1 / \sqrt{n})$ by Stirling's approximation. For Example (3.), one event would be the set $\{1,2\}$; if $n=6$, then for this event A under the distribution \mathcal{D} described above we would have $\operatorname{Pr}[A]=\frac{1^{2}+2^{2}}{1^{2}+\cdots+6^{2}}=\frac{5}{91}$.

Given two events $A, B \subseteq S$, the compound event corresponding to A and B is written $A \wedge B$ or $A \cap B$; its probability is

$$
\operatorname{Pr}[A \wedge B]=\sum_{s \in A \cap B} \operatorname{Pr}[s]
$$

(As mentioned above, sometimes it's more natural to think of an event A as "a condition that may or may not be satisfied when a random s is drawn from \mathcal{D}." The notation $A \wedge B$ captures this; its intuitive meaning is that when s is drawn, it satisfies both condition A and condition B. In the context of Example (1.), A might be that a randomly selected person has brown hair, and B might be that a randomly selected person is a complexity theorist; $A \wedge B$ would be the condition that a randomly selected person is a brown-haired complexity theorist. A more formal take on the situation is that A is a subset of people, namely the set of brown-haired people, and B is another subset of people, namely the set of complexity theorists, and consequently $A \cap B$ is the intersection of these two subsets, namely the set of all brown-haired complexity theorists.)

We have that

$$
\begin{equation*}
\operatorname{Pr}[A \wedge B]=\operatorname{Pr}[A \mid B] \cdot \operatorname{Pr}[B], \quad \text { where } \quad \operatorname{Pr}[A \mid B]=\frac{\sum_{s \in A \cap B} \operatorname{Pr}[s]}{\sum_{s \in B} \operatorname{Pr}[s]}=\frac{\operatorname{Pr}[A \wedge B]}{\operatorname{Pr}[B]} \tag{1}
\end{equation*}
$$

$\operatorname{Pr}[A \mid B]$ is the conditional probability of A given B. In Example (2.), we might have that A is the set of all n-bit strings with an even number of 1 's and B is the set of all n-bit strings that have
their first three bits all being 1 ; then $\operatorname{Pr}[A \mid B]$ would be the fraction of all n-bit strings of the form $111 *^{n-3}$ that have an even number of 1 's.

An easy consequence of Equation (1) is the following:

$$
\operatorname{Pr}[A]=\overbrace{\operatorname{Pr}[A \wedge B]+\operatorname{Pr}[A \wedge \bar{B}]}^{\text {"law of total probability" }} \leq \operatorname{Pr}[B]+\operatorname{Pr}[A \mid \bar{B}] \operatorname{Pr}[B] \leq \operatorname{Pr}[B]+\operatorname{Pr}[A \mid \bar{B}] ;
$$

we will use this on several occasions.
Events A, B are said to be independent if $\operatorname{Pr}[A \wedge B]=\operatorname{Pr}[A] \cdot \operatorname{Pr}[B]$. Let's return to Example (2.), where again the probabilistic experiment is drawing a uniform n-bit string (call it x). Are the events A and B described above independent? (Yes, assuming $n>3$; think about why...). Let C be the event "at least half of the bits in x are 1." Are events B and C independent? (No; again, think about why...)

Intuitively, independence between events is very powerful and useful because "independent repetitions of a random experiment drives probabilities down very fast" - if we perform a random experiment which has "success probability" p independently k times, the probability that all k occurrences result in success is only p^{k}. (Note that if the original sample space for a probabilistic experiment is S, then the sample space corresponding to k executions of the probabilistic experiment is S^{k}, the set of all k-tuples of elements of S.)

4 Random variables, expectation, and linearity of expectation.

Given a sample space S and a distribution \mathcal{D} over S, a random variable is a function X from S to \mathbb{R}. In the context of Example (1.), one possible random variable would be the function which, on input a person on Earth, outputs their height in centimeters. In Example (3.), one possible random variable would be the function $X(s)=3 s+4$.

The expectation of a random variable X is "the average value it takes over a random draw from $\mathcal{D}^{\prime \prime}$; more precisely, it is

$$
\mathbf{E}[X]:=\sum_{s \in S} X(s) \mathcal{D}(s)=\sum_{a} a \cdot \operatorname{Pr}[X=a] .
$$

Returning to the random variable X described above for Example (1.), $\mathbf{E}[x]$ would just be the average height in centimeters of a random person on earth. In Example (3.), with $n=3$ (so $S=\{1,2,3\})$ we would have

$$
\mathbf{E}[X]=(3 \cdot 1+4) \cdot \frac{1^{2}}{1^{2}+2^{2}+3^{2}}+(3 \cdot 2+4) \cdot \frac{2^{2}}{1^{2}+2^{2}+3^{2}}+(3 \cdot 3+4) \cdot \frac{3^{2}}{1^{2}+2^{2}+3^{2}} .
$$

The most important thing to know about expectation is the principle of linearity of expectation. This says that given any collection of random variables X_{1}, \ldots, X_{t} over a sample space S, whether or not they are independent we have

$$
\mathbf{E}\left[X_{1}+\cdots+X_{t}\right]=\mathbf{E}\left[X_{1}\right]+\cdots+\mathbf{E}\left[X_{t}\right]
$$

(think about why this is true!) This principle can often simplify your life; for example, consider Example (2.) where the random variable X is the number of 1 's in a uniformly random n-bit string. What is $\mathbf{E}[X]$? A direct application of the definition of expectation gives

$$
\mathbf{E}[X]=\sum_{i=0}^{n} i \cdot \frac{\binom{n}{i}}{2^{n}}
$$

(since a uniform random n-bit string has i ones with probability $\binom{n}{i} / 2^{n}$). It can be shown that this evaluates to $n / 2$, but linearity of expectation makes this very easy to see: we have $X=X_{1}+\cdots+X_{n}$ where X_{i} is 1 if the i-th bit of the string is 1 . Applying linearity of expectation we get that

$$
\mathbf{E}[X]=\mathbf{E}\left[X_{1}+\cdots+X_{n}\right]=\mathbf{E}\left[X_{1}\right]+\cdots+\mathbf{E}\left[X_{n}\right]=n \cdot(1 / 2)
$$

since each of the n random variables X_{i} has $\mathbf{E}\left[X_{i}\right]=1 / 2$.

