Last time:
- det. comm. c.xit y f: X x Y -> Z
- protocols, rectangles, leaves, lower bds:
 if any partition of matrix f(x, y) into monochrom. rect.
 requires \geq \log t rect., then \(D(f) \geq \log t \).
 so \(D(\mathbb{EQ}) \geq n+1 \) (= n+1)

Today:
- application to time-space tradeoffs for TMs
- randomized comm. c.xit, appl. to 1-tape TM lower bounds
 (maybe) start last unit: circuit complexity

Questions?

Appl. of our det. c.c. lower bd:
Time/Space tradeoff for TMs

K-tape TMs:
read-only input tape, k worktape

How does info "flow" between A & B?
- state of FC: O(c1) bits
- contents of k worktapes: if space s TM,
 \(O(k \cdot s) = O(s) \) bits.
Lemma: Let $f: \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}$

Let M be a k-tape TM that runs in $T(n)$ time, $S(n)$ space on $3n$-bit inputs, s.t.:
1. M acc. all $w = x O^\gamma$, $x, y \in \{0,1\}^n$ and $f(x, y) = 1$
2. M rej " " " " " " " " $f(x, y) = 0$

Then $D(f) \leq O\left(\frac{T(n) \cdot S(n)}{n^2}\right)$.
(i.e. $n \cdot D(f) \leq O(T(n) \cdot S(n))$).

Here's a prot. for f:

Pf: On input $x y$, they sim M's exec. on $w = x O^\gamma$ as follows:

1. M's input head:
 - M's input head:
 - always either in 1) x-region (A sim.)
 - 2) y-region (B sim.)
 - 3) O-region (whoever was most recently doing sim.)

i.e. they transfer control only when head enters other player's region.
When they switch control, the info transferred is

At least \(n \) time steps between sucs, switches, so

tot # switches \(\leq T(n)^{1/n} \).

So tot. comm. is \(\leq O(S(n)) \cdot T(n)^{1/n} \) bits.

So that's a prot. using \(O(S(n) \cdot T(n))^{1/n} \) bits of comm.

Application: Palindromes.

\[L = \{ w w^R : w \in \{0,1\}^* \} \]

Let \(M \) be \(k \)-tape TM for \(L \),

\(M \) runs in \(T(n) \) time, \(S(n) \) space on \(3n \)-bit inputs.

\(f(x,y) = 1 \) iff \(x = y^R \)

This \(M \) acc. \(w = x^O y \), \(x, y \in \{0,1\}^n \), \(f(x,y) = 1 \)

"rej" "" "

\(f(x,y) = 0 \).

This \(f \) is equiv to \(EQ \), so \(O(f) \geq n + 1 \).

So

\[n + 1 \leq O(f) \leq O\left(\frac{T(n) \cdot S(n)}{n} \right) \]

hence

\[\Omega(n^2) \leq T(n) \cdot S(n). \]

Easy: TM using \(O(n) \) time, \(O(n) \) space

\(\bigvee \)

" " " \(O(n^2) \) time, \(O(\log n) \) space

No TM using \(n^{0.99} \) space, \(O(n) \) time can exist.
Randomized C.C. A, B use randomness.

- "private-coin protocol": A has $\$A$, B $\$B$.

We discuss

- public coin protocols: A, B shared access to common $\$\text{pub}$ random string.

 In prot., each A node is f of $x \& \$\text{pub}$ B $``$ $``$ $``$ $y \& \$\text{pub}$.

 Equiv. to: prob. dist. over det. protocols.

 $f: \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}$ $f(x,y)$

 Def: *A zero-error pub coin rand prot. for f* is a dist. over det prots P, each is a correct prot. for f.

 The avg-case cost of P_{rand} on (x,y) is

 $E[\# \text{bits comm. on } (x,y)] = E[\text{depth of leaf } (x,y) \text{ reaches}]$.

 The avg-case cost of P_{rand} is $\max_{(x,y)}$.

 Finally,

 $R^{\text{pub}}_0(f) = \min_{P_{\text{rand}}} \max_{(x,y)}$ over all P_{rand}.

Fact: $R^{\text{pub}}_0(EQ) = \Theta(n)$.

Applic. of rand. CC to 1-tape TM lower bds.
Lemma: Let $f: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$.

Let M be 1-tape TM running in $T(n)$ time on $3n$-bits.

$s.t.$ \cdot M acc. all $w = x \cdot 0^n$, $x, y \in \{0,1\}^n \Rightarrow f(x, y) = 1$ (as before)

\cdot M rej $\cdot \cdot \cdot \cdot \cdot \cdot f(x, y) = 0$.

Then $R_o(f) \leq O\left(\frac{T(n)}{n}\right)$.

Proof: Given M, here's a zero-error randomized protocol for f:

A, B use log, $\log n$ (public) to pick a unit random index $i \in \{1, \ldots, n\}$. (log loc. in 0^n block)

A, B simulate M:

Each switch costs $O(1)$ bits (finite control state)

Runtime $\leq T(n)$.

l unit random from $\{1, \ldots, n\}$:

So $E\left[\#\text{times } M \text{ crosses } l \text{ (per switch)}\right] \leq \frac{T(n)}{n}$.

So $E\left[\text{cost of protocol}\right] \leq O\left(\frac{T(n)}{n}\right)$.
Since \(R^\text{pub}_o(EQ) = \Theta(n) \), again get PAC result:
\[
\Theta(n) \leq O\left(\frac{T(n)}{n} \right),
\]
\[\text{i.e.} \]
any 1-tape TM for palindromes needs \(\Omega(n^2) \) time.

\text{Rand. prot. with error.}

Let’s relax, and consider \(\text{pub coin prot. for EQ} \)
s.t. for every \((x, y)\), prot. gives right answer
(1 if \(x = y \), 0 if \(x \neq y \))
w.p. \(\geq 99.9\% \). \(R^\text{pub}_\varepsilon(EQ) \)
\[\Rightarrow \varepsilon = 0.001 \]

\text{Fact: For } \varepsilon = 0.001, \ R^\text{pub}_\varepsilon(EQ) = O(1). \quad O\left(\log \frac{1}{\varepsilon} \right).

\text{Here's how: Let } r = (r_1, \ldots, r_n) \in \{0,1\}^n \text{ be first } n \text{ bits of shared rand. string.}

x, r \in \{0,1\}^n

A computes \(x \cdot r \mod 2 \) \quad x, r, \ldots, x \cdot r_n \mod 2
t and send to B.

B computes \(y \cdot r \) and compare to what A sent.

• if \(x = y \) : of course the bits agree.
\[\text{if } x \neq y: \quad \Pr[x \cdot r \mod 2 = y \cdot r \mod 2] = \frac{1}{2}. \]

So repeating \(\log \frac{1}{\varepsilon} \) times, if \(x = y \) \(\checkmark \)
if \(x \neq y \), they learn this w.p. \(1 - \varepsilon \). \(\checkmark \)

Last unit

Circuit complexity

Recall **Boo's chrt**: natural way to compute
\[f: \{0,1\}^n \rightarrow \{0,1\} \]

Size of a chrt:
\# gates.

Depth of chrt: length of longest path to output.

Def: \(f \) : \(\{0,1\}^* \rightarrow \{0,1\} \) has circuit complexity \(s(n) \) if \(\forall n \), \(f \) on \(\{0,1\}^n \) is computed by
a size- \(s(n) \) chrt.

\[L \leq \varepsilon^* \]

Ex: \(\text{Saw} \quad \text{PAR} : \{0,1\}^* \rightarrow \{0,1\} \)
\[\text{PAR}(x_1, \ldots, x_n) = x_1 + \cdots + x_n \mod 2 \]
has \(O(n) \) size chrts.

Really, a \(f : \{0,1\}^* \rightarrow \{0,1\} \)
\[\uparrow \]
\[\downarrow \]
Recall: If $L \subseteq P$, then L has a family of poly(n)-size cuts.

So... if could show L doesn't have, would show $L \not\subseteq P$.

Hence, study circuit lower bound.

Next time:
* nonexplicit very strong ckt LBs.
* start constant-depth circuit lower bounds.