Last time: Finished randomness unit
 \begin{itemize}
 \item $\text{BPP} \subseteq \text{P/poly} \ (\text{Adleman})$
 \item $\text{BPP} \subseteq \Sigma^p_2 \cap \Pi^p_2 \ (\text{Sipser - Gacs - Lautemann})$
 \end{itemize}

Readings: Pap. 11.2, AB 7.4, 9.5.4

Today: start unit on complexity of counting problems
 \begin{itemize}
 \item motivation, basics, $\#P$, FP
 \item $\#P$-completeness, PERMANENT
 \item Readings: Pap. 18.1, AB 17.1-17.3
 \end{itemize}

Midterm: back soon.

Questions?

Motivation / basics

Counting problem: output a $\#$ (count objects)

Ex:
 \begin{itemize}
 \item $\#\text{SAT}$: input is φ, a Boolean formula $\varphi(x_1, \ldots, x_n)$
 \vspace{.1in}
 \begin{itemize}
 \item Q: how many $x = (x_1, \ldots, x_n) \in \{0,1\}^n$ have $\varphi(x) = 1$?
 \end{itemize}
 \vspace{.1in}
 \begin{itemize}
 \item hard to find...
 \end{itemize}
 \item $\#\text{CYCLES}$: input $G = (V, E)$ undirected graph
 \vspace{.1in}
 \begin{itemize}
 \item Q: how many simple cycles?
 \end{itemize}
 \vspace{.1in}
 \begin{itemize}
 \item easy to find if exist
 \end{itemize}
 \item $\#\text{PATHS}$: input is $G = (V, E)$ directed graph, s, $t \in V$
 \end{itemize}
Q: How many directed acyclic paths?

Motivation:

• Connected to other fields:
 - Statistical physics (_configuration of a physical system?)
 - Combinatorial enumeration

• Applications in various areas:
 - Network reliability
 - AI/decision making under uncertainty

Robot, int vars x_1, \ldots, x_n

Robot should act if $\Psi(x_1, \ldots, x_n)$

Uncertainty about variables... $x_i \in \{0, 1\}$

$\Pr[\text{should act}] = \frac{\#s.t. \Psi}{2^n}$.

• Counting problems can be hard even if corresponding decision problems are easy (#CYCLES, #PATHS).
• Only interested in counting "easy to verify/recognize" objects.

$\text{#P} :$ the class of counting problems.

Definition: A function $f: \Sigma^* \rightarrow \mathbb{N}$ is in #P if

1. There's a polytime NTM N s.t. $\forall x,$

 $f(x) = \# \text{ of acc. computations of } N \text{ on } x.$

 Or, if you like,
Alt: \(f \in \#P \) if there's a poly-time verifier \(V(\cdot, \cdot) \) for some lang. \(L \in \text{NP} \), s.t. \(\forall x, f(x) = |\{w: V(x, w) \text{ accepts}\}|. \)

- Recall: "\(V \) is a poly-time verif. for \(L \)" means:
 - \(V(x, w) \) runs in poly(\(|x|\)) time \(\forall x, w, \) \(V \)
 - \(\forall x, x \in L \) iff \(\exists w \text{ s.t } V(x, w) \text{ accepts}. \)

Ex: I claim mult. is in \#P.

Input: \((a, b)\)

NTM: guess \(1 \leq x \leq a \)

" \(1 \leq y \leq b \)

verifies \(x \cdot y \leq a \cdot b. \)

Note: the \(L \) corr. to the NTM \(N \) (or verif. \(V \)) needn't be a "hard" lang. in NP (CYCLES, PATH).

- and there are "easy" counting problems in \#P.

Returning to \#SAT:

\[V(\varphi, z) : \quad z = \text{ ass to vars}, \]

\[x \cdot w \quad \varphi = \text{ a Bool formula} \]

\[V(\varphi, z) \text{ acc. iff } \varphi(z) = 1. \]

Similar for \#PATHS

\[V(G, (u_1, u_2, \ldots, u_n)) \]

\[V \text{ checks } s = u, t = u, u_i \rightarrow u_{i+1}, \text{ edge is present} \]
in G for i=1,...,r-1.

Fact: Let \(L \in \text{NP} \) (\(\forall N \text{ corr. NTM} \)),
\(\exists f \) be the fn in \(\#P \) corr. to \(N \).
For all \(x \), \(f(x) \geq 0 \) if \(x \in L \).

So computing \(f(x) \) is at least as hard as deciding \(x \in L \).

Def: \(FP = \{ \text{all det. poly-time computable fns } f : \Sigma^* \rightarrow \mathbb{N} \} \).

"function-P"
"easy problems"

Cor: If \(\#P \leq FP \) then \(P = NP \).

Completeness
right notion

Recall NPC:
\(L_1 \leq_p L_2 \text{ poly-time reduc} \)

For counting, oracles provide the "right" notion of reduc.
Recall: oracle for lang. L: black box

$\chi \rightarrow L_{\text{oracle}}$

Y/N

$x \in L \iff x \notin L$

$P^L: L \in P^L \iff \exists f \text{ TM } M^f \text{ s.t. } M^f \text{ dec. } L$

Function oracles: $f: \Sigma^* \rightarrow \mathbb{N}$

$TM M$ writes a string ε on "oracle tape"; enters 2 oracles in one time step, the value $f(\varepsilon)$ is written on "oracle response tape".

Space complexity: # cells of worktapes, oracle tapes visited by TM.

$M^f: TM$ with function oracle f

P^f: class of lang. dec. by some poly time M equipped with an f-oracle

FP^f: class of functions computed by some poly time M equipped with an f-oracle

Reminder: it's okay for M^f to call the f-oracle multiple times.

Def: A function $f: \Sigma^* \rightarrow \mathbb{N}$ is $\#P$-complete if

1. $f \in \#P$
2. for every $g \in \#P$, have $g \in FP^f$.
If \(f \in \text{FP} \), then \(\text{FP}^f = \text{FP} \), so

Claim: if \(f \) is \(\#P \)-complete \& \(f \in \text{FP} \), then \(\text{FP} = \#P \).

Recall: \(\#3\text{CNF} \): input is a 3CNF, output is \(\#\text{sat} \). assts.

Thm: \(\#3\text{CNF} \) is \(\#P \)-complete.

Proof sketch: ① Easy to see \(\#3\text{CNF} \in \#P \).
② must show \(\forall g \in \#P \), have \(g \in \text{FP} \) \(\#3\text{CNF} \).

\[\xrightarrow{(\text{N accepts})} \]

Fix \(g \in \#P \). So \(\exists \text{NTM} \ N \), \(\lambda \), \(L \) s.t. \(g(x) = \#\text{acc comp. of } N \text{ on } x \).

Reduce to \(\#3\text{CNF} \) in two steps:
① \(L \leq_P \text{CIRCUIT-SAT} \) \(\Rightarrow \) languages.
② \(\text{CIRCUIT-SAT} \leq 3\text{CNF} \)

Each \(\text{reduce} \). ② \(\text{preserves } \#\text{accepting comp.} \).

②: Cook-Levin reduc. \(R \) from \(L \) to \(\text{CUT-SAT} \): given \(x \), constructs \(C \) s.t. \(x \) of \(\text{each assignment to inputs} \) \(\iff \) \(N \) makes \(n \) nondet steps that of \(C \)

\(C \) accepts partie. asst. \(\iff \) \(N \) accepts under that parte.
So \(g(x) = \# \text{sat. asssts. to ckt } C = R_{CC}(x) \).

(b) Second reduc. \(R_{3CNF} \) from \(\text{CKT-SAT to 3CNF} \): given as input ckt \(C \), \(R_{3CNF} \) constructs a 3CNF \(\psi(x, y) \) s.t.

\[
C(x) = 1 \implies \exists! \text{ assst to y-vars s.t. } \psi(x, y) = 1
\]

\[
C(x) = 0 \implies \text{no assst to y-vars causes } \psi(x, y) = 1
\]

(either some gate's integrity is violated, or output = 0)

\[
\text{Thm 9.34 Sipser}
\]

So \(\# \text{sat. of } C = \# \text{sat. of } \psi \).

So \(g \in \text{FP}^{\#3CNF} \): on input \(x \), perform \(R_{CC} \) to get ckt \(C \); then perform \(R_{3CNF} \) on \(C \) to get \(\psi \), a 3CNF whose \(\# \text{of sat. asssts = acc. comp. of } L \text{ on } x \).

Call \(\#3CNF \) oracle on \(\psi \), return result.

\(\#3CNF \): existence hard, counting hard.

A problem where \(\nabla \text{ easy, } \forall \text{ }.
3DNF: OR of ANOS of width 3

a 3DNF \(x_1, x_2, \ldots, x_9 \) \(\lor \) \(x_2 x_4 x_5 \lor x_6 x_7 x_8 \lor x_8 x_9 \)

3DNF sat. question: trivial to determine existence. But...

Thm: \(\#3\text{DNF} \) is \#P-complete.

Pf: Given \(\varphi \) a 3DNF, \(\overline{\varphi} \) is a 3CNF.

So given \(\varphi \in \text{3CNF} \), write down the 3DNF \(\overline{\varphi} \).

Call \(\#3\text{DNF} \) oracle, get answer \(m \), return \(2^m - m \).

\(\#3\text{DNF} \) in \#P;

above shows every \(\text{P} \in \#\text{P} \) is \text{rd.} to \(\#3\text{DNF} \).

(b/c every \(\text{P} \in \#\text{P} \) is \text{rd.} to \(\#3\text{CNF}, \#3\text{CNF} \text{rd.} to \#\text{DNF} \))

Next time: PER (\& more.)