Last time: \(QBF, \overline{QBF} \) are PSPACE-complete.
\[\exists x_1 \forall x_2 \exists x_3 \ldots \forall x_n \ \varphi(x_1, \ldots, x_n) \]
\(\rightarrow \text{game on graphs} \)

Today: • IS thus: nondet space closed under complementation

Readings: AB 4.3.2, Papadimitriou 7.3, Sipser 8.6, Cai 3.3

• start randomness unit (#5) prob. basics

Readings: Cai 5.1, Wikipedia

Admin: No OH next week (midterm week)

Midterm released Sun, due end of Fri next week.

Questions?

\[f(i) = 2f(i-1) \quad f(i) = C + f(i-1) \]

Nondet. space is closed under complement (1)

Recall: • det classes like \(P, L, \text{PSPACE}\) is closed under complement. \(P = \text{co-P} \subseteq \text{co-L}\) etc.

• we \textit{REALLY} think \(NP \neq \text{co-NP}\).

What about space classes? \(NL\) ? First conjecture...
Then: (I T '87) Let \(f(n) \geq \log n \) be a p.c.f. Then \(\text{NSPACE}(f(n)) = \text{coNSPACE}(f(n)) \).

\[\text{Pf: Fix } L \in \text{NSPACE}(f(n)). \]

Let \(M \) be NTM, \(f(n) \)-space, dec. \(L \).

We'll describe NTM \(N \), \(O(f(n)) \)-space, s.t.

\[\forall x, N \text{ acc. } x \text{ (on some path)} \iff \text{every comp. path of } M \text{ on } x \text{ rejects}. \]

This means \(N \) decides \(L \).

\[\text{Fix } \cdot |x| = n \]

\[\text{Let } \cdot w = c \cdot f(n), c = \text{const s.t. } w > \# \text{config of } M \text{ on } x. \text{ (Note runtime of } M \text{ on } x \text{, on any path, } \leq w. \) \]

\[\text{Let } \cdot s = \text{init config of } M \text{ on } x \]

\[\text{Let } \cdot t = 1 \text{ acc config of } M \text{ on } x \text{ (on input } x) \]

\[\text{Let } \cdot l = \# \text{ configs reachable from } s \text{ along some path.} \]

\[\text{Let alg: Here's how an NTM that is given } L \text{ as input can correctly determine whether } M \text{ rejects } x \text{ along every path:} \]

\[\text{Alg 1:} \]

\[\begin{align*}
\text{\hspace{2cm}} & \cdot \text{let } r = 0 \quad \text{counter of \# reachable configs besides } t \\
\text{\hspace{2cm}} & \cdot \text{For every config } c \text{ among the } m \text{ poss. EXCEPT } t \text{ do:} \\
\text{\hspace{4cm}} & \cdot \text{guess whether } J \text{ can put path (of length } \leq w) \text{ from } s \text{ to } c; \text{ if guess } y, \text{ guess } t \text{ verify path.} \\
\text{\hspace{4cm}} & \text{If successful } (y, \text{ succ. verify path}), \text{ set } r = r + 1. \\
\text{\hspace{4cm}} & \text{If } r = l, \text{ accept. o/w reject.}
\end{align*} \]
Works. \(O(f(n)) \) space.

\(L \) (accepts \(s \)) iff guesses contain \(k \) non-\(t \) nodes are reachable; since \(L = \# \) reachable configs, all other nodes (incl. \(t \)) not reachable from \(s \). So \(s \in L \) iff \(t \) not reachable from \(s \), i.e., \(M \) rejects on every path.

Remaining to show: how to nondet. compute \(L = \# \) configs reachable from \(s \).

We give NTM \(N' \) st some branch outputs right value for \(L \), all other branches reject.

"Inductive counting"

For \(i \in [m] \), let \(A_i = \) set of all configs, dist \(i \) from \(s \).

So \(A_0 = \{s\}; A_0 \subseteq A_1 \subseteq A_2 \subseteq \ldots \) \(A_m \) = all configs reachable from \(s \). Want \(|A_m| \). Have \(|A_0| = 1 \).

\(\Rightarrow \) so \(|A_m| = k \).

Here's nondet proc. to compute \(|A_{i+1}| \) given \(|A_i| \)

(some path gets it right, all others reject) (Apply this repeatedly, starting w/ \(|A_0| = 1 \) & reusing space, to get \(|A_m| = k \).)

Alg 2:

Outer loop: Sim. to earlier: alg goes through all \(m \) poss configs \(c \), \(t \) for each one decides whether \(c \in A_{i+1} \),

\(t \) maintains counter of \# of these \(c \)'s that are in \(A_{i+1} \).
To decide whether \(c \in A_{i+1} \):

- **Inner loop:** Loop over all possible configurations \(c' \). For each \(c' \):
 - guess whether \(c' \in A_i \); if yes, guess and check \(c' \)-to-
 \(c' \)-path of length \(\leq i \); if guessed and checked \(c' \in A_i \), check if
 \(M \) transitions from \(c' \) to \(c \) in one step; if yes,
 decide \(c \in A_{i+1} \).

 As loop thru \(c' \)'s, count # of them that
 were verified as being in \(A_i \).

- **At end of inner loop, after all \(c' \)'s were processed:**
 - If the count (\# configs that were
 found to be in \(A_i \)) is \(\neq |A_i| \), it must be \(< |A_i| \) that
 means the guesses missed some \(c' \) in \(A_i \); \(\textbf{Reject} \)
 - If the count (\# configs that were found to be in \(A_i \))
 \(IS = |A_i| \) (remember \(IS \) is given \(|A_i| \)), \(\text{and } c \) was never
 found to be 1-step-reachable from any of the \(c' \)'s in
 \(A_i \), means \(c \) is not in \(A_{i+1} \). So \(a_{i+1} \) decides \(c \notin A_{i+1} \).

So... \(coNL = NL \).

Surprises happen...

Unit #5 Randomness (in computation)

Randomized comput: \(a_{i+1} \) can "toss coins" - make
random choices during its execution

- allow \(R.A. \) to err w/ some...
probability.

Motiv: - still realistic model
- helpful!

Much like nondet. comput. (multiple choices / execution paths), but more realistic success crit.: "most" paths / "a random path" should succeed.

Randomness key to crypto: unpredictability; adversary kept off balance.
Alg. design is an adv. scenario: given a fixed det alg, worst-case analysis is like adv. choosing input.
If alg is randomized, no fixed alg, so can help thwart adv. inputs.

Probability basics

We will always consider discrete/finite sample spaces (no worries about "measurability")

Basic setup: Finite sample space S; set of all outcomes for "probabilistic experiment" (P.E.)

- P.E. could be "pick a random person in world w. prob. a their height"; $S = \text{all people}$
- P.E. could be "pick a uniform string from $\{0,1\}^n$"; $S = \{0,1\}^n$.

$\mathbb{P}(S) = \frac{1}{57}$
Prob. dist. \(Y \) over \(S \): defined by weight
\[Y(s) \text{ for each } s \in S, \]
- \(Y(s) \geq 0 \text{ for all } s \in S \)
- \(\sum_{s \in S} Y(s) = 1 \).

If \(Y \) is clear, we may write

"\(Pr\{s\} \)" to mean \(Y(s) \).

\[\sum_{s \in S} Pr\{s\} = 1. \]

An event: a subset \(A \subseteq S \). "something that does or doesn't happen."

Have \(Pr\{A\} = \sum_{s \in A} Pr\{s\}. \)

For any two events \(A, B \), have

\[Pr\{A \cap B\} = \sum_{s \in A \cap B} Pr\{s\} = Pr\{A \mid B\} \cdot Pr\{B\}, \]

where \(Pr\{A \mid B\} = \frac{\sum_{s \in A \cap B} Pr\{s\}}{Pr\{B\}} = \frac{Pr\{A \cap B\}}{Pr\{B\}}. \)

"Conditional prob. of \(A \text{ given } B \)"

Ex: P.E. = roll red die \& blue die (both fair)

\(A = \text{total roll } \leq 5 \)

\(B = \text{one die even, other odd.} \)

\(A = \{ (1, 1); (1, 2); \ldots; (4, 1) \} \)
Next time: independence, random variables, tail bounds, rand. alg. for identity testing

Readings for next time:

Papad. 11.1, AB 7.2, 3 (you may like Sipser 10.2)