Last time: started space complexity unit
REACH \in NC \quad \text{REACH} \in \text{SPACE}(\log n)^3

Savitch's Theorem: For any p.c.f. \(f(n) \geq \log n \), have \(\text{NSPACE}(f(n)) \subseteq \text{SPACE}(f(n)^3) \).

Today: log space reductions.

NL completeness \quad \text{TQBF}

REACH is NL-complete \quad \text{QSAT}

PSPACE completeness. (QBF is PSPACE-complete)

Admin: PS 2 due Thurs

Readings: AB 4.2, Papad. 19.1, Sipser 8.3, Cai 3.4

Questions?

Log-space reductions, NL-completeness

Q: is \(L = \text{NL} \)? probably... not?

Believed \(\text{REACH} \notin L \).

Can't answer this, but can simplify landscape: analog to NPC theory.

There are problems complete for NL: if anyone of them is in L, then \(\text{NL} = L \).

\text{REACH} is such a problem.
Can't use \leq_p (poly-time red): too strong.

Right notion:

Def: A is log-space reducible to B (written $A \leq_L B$)

if there is a func. $f : \Sigma^* \rightarrow \Sigma^*$, computable in logspace, s.t. $\forall x \in \Sigma^*$,

$x \in A \iff f(x) \in B$

but must be $\leq \text{poly}(|x|)$ (b/c f on length-n input can only have $\leq \text{poly}(n)$ distinct configs, + can't repeat a config.)

Def: B is NL-complete if

1. $B \in \text{NL}$, +
2. every $A \in \text{NL}$ has $A \leq_L B$.

Fact: If $A \leq_L B$ + $B \in \text{L}$, then $A \in \text{L}$.

Pf: Wrong arg: "on input $x \in A$, first use logspace-computable f to compute $f(x)$, then run logspace alg for B on $f(x)$".
Can’t do this: \(|f(x)| \) could be \(\gg \log n \).

Right approach: machine \(M_4 \) for \(A \) computes indiv. symbols of \(f(x) \) as required by \(M_B \) for its run on \(f(x) \).

\(\rightarrow \) (no writing \(f(x) \) explicitly)

\(M_4 \) simulates \(M_B \) on \(f(x) \) keeping track of loc. of its input head in \(f(x) \).

Every time \(M_B \) would move input tape head (say to loc. \(i \) in \(f(x) \)), \(M_4 \) restarts comp. of \(f \) on \(x \) (scratch tape) from beginning; ignores (doesn’t write down) all output of \(f \) except \(i \)th bit.) Since \(f \) (less space computable, i.e. poly \(n \)), so \(O(\log n) \) space enough.

Thm: REACH is \(NL \)-complete.

Pf: Know (1) \(REACH \in NL \) (last time)

Need (2) every \(A \in NL \) has \(A \in REACH \).

Let \(A \in NL \), let \(M_A \) be \(\text{a losspace NTM for } A \).

Given \(x \in A \), construct \((G,s,t) \) in losspace s.t.

\(G \) has \(s \to t \) path iff \(x \in A \).

\(G \) will be the config. graph of \(M_A \) on input \(x \):

\(G \) has \(s_{\text{start}} \to c_i \) path iff \(x \in A \).

nodes of \(G \): all poss. configs. of \(M_A \) of length \(\log n \).

edges: have \(c_i \to c_j \) iff \(M_A \), after one step from config. \(c_i \), can reach \(c_j \).

The machine which outputs config. graph \(G_{M_A,x} \) on input \(x \) in losspace:

- easy to output \(s_{\text{start}} \) and \(c_0 \)
outputs 6 as list of nodes, list of edges.

- nodes: easy (list all well-formed log(n) length strings, reusing space)
- edges: loop thru all pairs of nodes; for each candidate edge \(c_i \rightarrow c_j \), can verify whether \(M_k \) yields \(c_j \) from \(c_i \) in one time step in \(O(n) \) space.

PSPACE - completeness

Recall usual NPC SAT problem:

determining truth/falsity of

\[\exists x_1 \exists x_2 \ldots \exists x_n \\forall (x_1, \ldots, x_n) \]

Generalization: consider expr. like

\[\exists x, \forall x_2 \exists x_3, \forall x_4 \ldots \exists x_n \\forall (x_1, \ldots, x_n) \]

a totally quantified Boolean formula. Can capture e.g. \(\exists x, \exists x_2 \forall x_3 \): just ignore \(1 \) (dummy var.).

Every var. in \(\varphi \) has some quantifier:

\[\exists x: \forall x \exists y (x \lor y) \land (\neg x \lor y) \] is TRUE
\(\exists y \forall z (y \land z) \quad \text{FALSE} \)

\(\exists x \, (x \lor y) \quad \text{not tot. quantified} \)

Taut:

\(\forall x, \forall x_2 \ldots \forall x_n \, \phi(x, \ldots, x_n) \)

Def: Language

TQBF

\(\text{QSAT} = \{ \Phi : \Phi \text{ is a true tot. quant. Bool. form.} \} \)

\(\text{QSAT} \in \text{NP?} \quad \text{Seems... no?} \)

Seems "above whole \text{PH}"... (pays \text{BGS debt in full})

Thm: \(\text{QSAT is PSPACE-complete} : \)

1. \(\text{QSAT} \in \text{PSPACE,} \)
2. \(\forall \leq \text{PSPACE, have} \leq_p \text{QSAT.} \)

Pf of (i): here's poly space \(\Phi \) to det. whether an input \(\Phi \) is in \(\text{TQBF}: \)

Alg 4:

- check \(\Phi \) well-formed (all vars quantified)

So \(\Phi \) looks like

\(\exists x, \forall x, \exists x, \forall x \ldots \forall x_n \, \psi(x, \ldots, x_n) \)
- if Φ is $\exists x \alpha$: recursively call A on
 α with x replaced by $0x$
 α " " " " T (reusing space for
 2nd call. If at least one of
 returns T, return T,
 else return F.
- if Φ is $\forall x \alpha$: recursively call A on
 α with x replaced by $0x$
 α " " " " T (reusing space for
 2nd call. If both calls
 returns T, return T,
 else return F.
- if Φ has no quantifiers: all vars set to values,
 so just evaluate Φ and return result.

A is correct. Depth of recursion = n
Space usage: $\text{poly}(n)$ overhead per level of recursion,
so $\text{poly}(n)$ overall.

Sketch of 2): $A \in \text{PSPACE}$, have $\text{LE} \subseteq \text{SAT}.$

Fix any $L \in \text{PSPACE}$.

Let M be (det) TM running in n^k space and
deciding L. (Say M has 1 tape).
If M accepts, always does so (and halts)
in time 2^{dn^k} some const. d, n ($\omega(n^k)$, $\text{LE} = \text{P}$)

$\text{LE} \subseteq \text{P}$.
We need to give a polytime red. which, on input $x \in L$, output a QBF which is true iff $x \in L$.

3 ideas/ingredients:

1) Cook-Levin thm: computation tableau, cell $T_{i,j}$ contains contents of TM M's tape cell j at time t.
 As in CL pf, can use Bool formulas to enforce consistency of T with M's comput.
 NOTE: in n^k space, M runs for as long as $2^{d \cdot n^k}$ time, so tableau has n^k columns, $2^{d \cdot n^k}$ rows.

2) Savitch's theorem: recursively find midpoint of tableau.
 This would require $2^{d \cdot n^k} - 1$ $\exists \ldots \exists$ quantifiers...

3) Use uni quantifiers to save (expon.) on length of formula.
 (enables poly size QBF to capture the computation)

Next time: - finish
- another PSPACE-complete problem
 (Geography)
- IM/SZ (clever use of nondet.)