Last time: relations between different resources

Theorem: For f a p.c.f, have:

1. $\text{TIME}(f(n)) \leq \text{SPACE}(f(n))$.
2. $\text{TIME}(f(n)) \leq \text{NTIME}(f(n))$
3. $\text{SPACE}(f(n)) \leq \text{NSPACE}(f(n)) \leq \text{SPACE}(f(n)^2)$

Theorem: For $f(n)$ a p.c.f, have

$$\text{NTIME}(f(n)) \leq \bigvee_{k \geq 1} \text{TIME}(K^{f(n)k})$$

Theorem: For $f(n)$ a p.c.f, have

$$\text{NSPACE}(f(n)) \leq \bigvee_{k \geq 1} \text{TIME}(K^{f(n) + \log n})$$

$config. graph G_{m \times n}, \text{REACHABILITY}$

Today: space complexity

(AB Chap. 4, Sipser Chap. 8, Cai: Chap. 3)

Nondet. space: Switch's Theorem

$\text{NL, } \text{NL-completeness}$

Questions?

Recall space basics:

(iso space #4)
- $L \in \text{SPACE}(f(n))$ if there's a multi-tape TM that decides L and has space exactly $f(n)$.

- 1 tape
 - happy birthday
 - $n = 1 \times 1$

- C-tape:
 - happy birthday

- 2 work tapes
 - $f(n)$

- Linear compressor for space: $L \in \text{SPACE}(f(n)) \Rightarrow$
 - for any $\varepsilon > 0$, L also $\in \text{SPACE}(\varepsilon \cdot f(n))$.
 - really $\text{SPACE}(\max\{1, \varepsilon \cdot f(n)\})$

- For TMs with output, the output tape (output length)
 - doesn't "count" as space usage.

- Ex: TM for addition of 2 n-bit #s:
 - output length $= \Theta(n)$, space used $= O(\log n)$

Interesting space classes: $\log n$ up.

- $O(\log n)$ space: can't even store 2 pters into input, or count to n, write name of a single
O(\log n) space: can keep O(1) ptrs into input/vertices of G "in mind".

Key space classes:

\[L = \text{SPACE}(\log n) \]
\[NL = \text{NSPACE}(\log n) \]
\[\text{PSPACE} = \bigcup_{k \geq 1} \text{SPACE}(n^k) \]
\[\text{NPSPACE} = \bigcup_{k \geq 1} \text{NSPACE}(n^k) \]

SPACE CAN BE REUSED

Nondet. space

Switch Thm: For any p.c.f. \(f(n) \geq \log n \), have \(\text{NSPACE}(f(n)) \subseteq \text{SPACE}(f(n)^2) \).

\[\text{PSPACE} = \text{NPSPACE}; \]
\[NL \subseteq \text{SPACE}(\log(n)^3) \subseteq \text{PSPACE}. \]

Study \text{REACH}. Recall \text{REACH} \in \text{P}, (BFS, DFS, "mark reachable nodes" algs.) these are linear-space algs. Stronger result:
Claim: \(\text{REACH \in NL} \).

Pf: Guess path from \(s \) to \(t \) of length \(\leq n \), check that it's okay.

More detail: NTH with 3 tapes.

- \(T_1 \): Holds current node \(i \) in \(O(\log n) \) space suff.
- \(T_2 \): Machine nondet. writes node \(j \).
- Scans input to verify that \(i \rightarrow j \) edge is in \(G \).
- Rej: if not, if is, replace \(i \) on \(T_1 \) with \(j \).
- \(T_3 \): Keep counter of # times curr. node updated, rej: if reaches \(n+1 \).

Next step:

Claim: \(\text{REACH \in SPACE}(\log(n)^2) \).

Pf: Input is \((G,s,t) \) \(G = (V,E) \) n-node digraph.

Define

\[
\text{PATH}(x,y,i) = \begin{cases}
\text{TRUE} & \text{if } G \text{ has } x \rightarrow y \text{ path of length } \leq i \\
\text{FALSE} & \text{otherwise.}
\end{cases}
\]

\(G \in \text{REACH} \iff \text{PATH}(s,t,\log n) = \text{TRUE}. \)

How to decide \(\text{PATH}(x,y,i) = \text{TRUE} \) in small space?
Recursion + midpoints.

Key idea:
There exists a path of length $\leq 2^i$ in G iff for some z, there exist paths each of length $\leq 2^{i-1}$.

Rec alg for $PATH(x,y,i)$:

PATH (x,y,i)
\begin{enumerate}
 \item if $i = 0$ then if G has $x \to y$ edge return TRUE
 \item else return FALSE
 \item if $i > 0$:
 \begin{enumerate}
 \item for each vertex $z \in V$
 \begin{enumerate}
 \item if $PATH(x,z,i-1) \land PATH(z,y,i-1)$ return TRUE
 \item at end of loop (no z worked), return FALSE
 \end{enumerate}
 \end{enumerate}
\end{enumerate}

This can be run in $log(n)^2$ space (T_M with 2 worktapes):

tape 1: stack stores rec. call history.
Contains some triples (x,z,i) each of length $\leq 3 \log n$.

<table>
<thead>
<tr>
<th>(x,y,i)</th>
<th>$(x,z,i-1)$</th>
</tr>
</thead>
</table>

Reuse space when you're checking zs.
One M has determined truth value of $PATH(x,z,i-1)$:
- if T, erase $(x,z,i-1)$ and write $(z,y,i-1)$ and check that.
 If $PATH(z,y,i-1)$ is T, erase $(z,y,i-1)$.
M knows \(\text{PATH}(x, y, i) \) (so that gets erased...)

- If \(\text{PATH}(x, z, i) \) is \(F \), erase \(+ \) try \((x, z', i-1) \) (next \(z' \))

Depth of stack (# levels of recursion) \(\leq i \).

So space used \(\leq i \cdot (3 \log n) \) on this tape.

\(G \leq O(\log^2 n) \) for \(i = \log n \).

2nd tape: scratch space for counters through nodes of \(G \); input tape position, etc. \(O(1) \) counters, \(O(\log n) \) space.

Runtime of \(\alpha \)?

\[T(i) = \text{time for } \text{PATH}(x, y, i) \]

\[T(i) \leq 2n \cdot T(i-1) \quad T(n) \leq (2n)^i. \]

\(i = \log n \)

\[T(\log n) = (2n)^{\log n}. \]

Is there a poly \((\cdot) \) time, \(\log(n)^2 \) space \(\alpha \)

for \(\text{REACH} \)?

Switch Thm: For any p.c.f. \(f(n) > \log n \), have \(\text{NSPACE}(f(n)) \leq \text{SPACE}(f(n)^2) \).

Pf: Let \(M \) be \(f(n) \)-space NTM for \(\text{LENSPACE}(f(n)) \)

\[G_{M, x} \xrightarrow{1 \leq \gamma} \text{config graph: } \leq N = k^{f(n)} \] nodes.

Run our \(\text{REACH} \) alg on \(G_{M, x} \); it needs space

\[\log(N)^2 = \log(k^{f(n)})^2 = (f(n) \log k)^2 = O(f(n)^2). \]
PATH (C_{init}, C_{core}, \log (k^f(n)))

Note: input string is x, not G_{x, x}. No problem: our \log(n)^2 space algo only consults G to check if x \rightarrow y (two nodes conn.) in i = 0 case.

Given 2 configs C_1, C_2 (each of length O(f(n))) can decide if M yields C_2 from C_1 in one step by "looking at" C_1, C_2, transit. rule of M.

So can run this algo. in O(f(n)^2) space.

Does this use that f(n) is a p.a.c.f.? How did we "know" \log (k^f(n)) (param. for PATH)? Use P.C.F. to first compute f(kx) = f(x), use that value for...

(Can also do the kind of thing from last time: try f(n) = 1, 2, 3, ..., works at right value.)

\underline{NL Completeness}

Readings: AB Ch. 4.3
Papad. Ch. 16.1
Sipser 8.4, 8.5

Q: is L = NL?

probably... not?
Believed REACH \notin L. Can’t answer this, but can simplify landscape: analog. to NPC theory.
there are problems complete for NL: if anyone of them is in \(L \), then \(\text{NL} \subseteq \text{L} \).

\(\text{REACH} \) is such a problem.

Next time: log space reductions.

\(\text{NL completeness} \)

\(\text{REACH is NL-complete}. \)

\(\text{PSPACE completeness}. \)